Details
Original language | English |
---|---|
Article number | 19055 |
Number of pages | 17 |
Journal | Scientific reports |
Volume | 14 |
Issue number | 1 |
Early online date | 17 Aug 2024 |
Publication status | Published - 2024 |
Abstract
Beta-tricalcium phosphate (β-TCP) scaffolds manufactured through the foam replication method are widely employed in bone tissue regeneration. The mechanical strength of these scaffolds is a significant challenge, partly due to the rheological properties of the original suspension. Various strategies have been explored to enhance the mechanical properties. In this research, β-TCP scaffolds containing varying concentrations (0.25–1.00 wt%) of multi-walled carbon nanotubes (MWCNT) were developed. The findings indicate that the addition of MWCNTs led to a concentration-dependent improvement in the viscosity of β-TCP suspensions. All the prepared slurries exhibited viscoelastic behavior, with the storage modulus surpassing the loss modulus. The three time interval tests revealed that MWCNT-incorporated β-TCP suspensions exhibited faster structural recovery compared to pure β-TCP slurries. Introducing MWCNT modified compressive strength, and the optimal improvement was obtained using 0.75 wt% MWCNT. The in vitro degradation of β-TCP was also reduced by incorporating MWCNT. While the inclusion of carbon nanotubes had a marginal negative impact on the viability and attachment of MC3T3-E1 cells, the number of viable cells remained above 70% of the control group. Additionally, the results demonstrated that the scaffold increased the expression level of osteocalcin, osteoponthin, and alkaline phosphatase genes of adiposed-derived stem cells; however, higher levels of gene expersion were obtained by using MWCNT. The suitability of MWCNT-modified β-TCP suspensions for the foam replication method can be assessed by evaluating their rheological behavior, aiding in determining the critical additive concentration necessary for a successful coating process.
Keywords
- Bone substitute, Carbon nanotube, Foam replication, β-Tricalcium phosphate
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Scientific reports, Vol. 14, No. 1, 19055, 2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Reinforcing β-tricalcium phosphate scaffolds for potential applications in bone tissue engineering
T2 - impact of functionalized multi-walled carbon nanotubes
AU - Hesaraki, Saeed
AU - Saba, Golshan
AU - Shahrezaee, Mostafa
AU - Nezafati, Nader
AU - Orshesh, Ziba
AU - Roshanfar, Fahimeh
AU - Borhan, Shokoufeh
AU - Glasmacher, Birgit
AU - Makvandi, Pooyan
AU - Xu, Yi
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024
Y1 - 2024
N2 - Beta-tricalcium phosphate (β-TCP) scaffolds manufactured through the foam replication method are widely employed in bone tissue regeneration. The mechanical strength of these scaffolds is a significant challenge, partly due to the rheological properties of the original suspension. Various strategies have been explored to enhance the mechanical properties. In this research, β-TCP scaffolds containing varying concentrations (0.25–1.00 wt%) of multi-walled carbon nanotubes (MWCNT) were developed. The findings indicate that the addition of MWCNTs led to a concentration-dependent improvement in the viscosity of β-TCP suspensions. All the prepared slurries exhibited viscoelastic behavior, with the storage modulus surpassing the loss modulus. The three time interval tests revealed that MWCNT-incorporated β-TCP suspensions exhibited faster structural recovery compared to pure β-TCP slurries. Introducing MWCNT modified compressive strength, and the optimal improvement was obtained using 0.75 wt% MWCNT. The in vitro degradation of β-TCP was also reduced by incorporating MWCNT. While the inclusion of carbon nanotubes had a marginal negative impact on the viability and attachment of MC3T3-E1 cells, the number of viable cells remained above 70% of the control group. Additionally, the results demonstrated that the scaffold increased the expression level of osteocalcin, osteoponthin, and alkaline phosphatase genes of adiposed-derived stem cells; however, higher levels of gene expersion were obtained by using MWCNT. The suitability of MWCNT-modified β-TCP suspensions for the foam replication method can be assessed by evaluating their rheological behavior, aiding in determining the critical additive concentration necessary for a successful coating process.
AB - Beta-tricalcium phosphate (β-TCP) scaffolds manufactured through the foam replication method are widely employed in bone tissue regeneration. The mechanical strength of these scaffolds is a significant challenge, partly due to the rheological properties of the original suspension. Various strategies have been explored to enhance the mechanical properties. In this research, β-TCP scaffolds containing varying concentrations (0.25–1.00 wt%) of multi-walled carbon nanotubes (MWCNT) were developed. The findings indicate that the addition of MWCNTs led to a concentration-dependent improvement in the viscosity of β-TCP suspensions. All the prepared slurries exhibited viscoelastic behavior, with the storage modulus surpassing the loss modulus. The three time interval tests revealed that MWCNT-incorporated β-TCP suspensions exhibited faster structural recovery compared to pure β-TCP slurries. Introducing MWCNT modified compressive strength, and the optimal improvement was obtained using 0.75 wt% MWCNT. The in vitro degradation of β-TCP was also reduced by incorporating MWCNT. While the inclusion of carbon nanotubes had a marginal negative impact on the viability and attachment of MC3T3-E1 cells, the number of viable cells remained above 70% of the control group. Additionally, the results demonstrated that the scaffold increased the expression level of osteocalcin, osteoponthin, and alkaline phosphatase genes of adiposed-derived stem cells; however, higher levels of gene expersion were obtained by using MWCNT. The suitability of MWCNT-modified β-TCP suspensions for the foam replication method can be assessed by evaluating their rheological behavior, aiding in determining the critical additive concentration necessary for a successful coating process.
KW - Bone substitute
KW - Carbon nanotube
KW - Foam replication
KW - β-Tricalcium phosphate
UR - http://www.scopus.com/inward/record.url?scp=85201367515&partnerID=8YFLogxK
U2 - 10.1038/s41598-024-68419-2
DO - 10.1038/s41598-024-68419-2
M3 - Article
C2 - 39154029
AN - SCOPUS:85201367515
VL - 14
JO - Scientific reports
JF - Scientific reports
SN - 2045-2322
IS - 1
M1 - 19055
ER -