Details
Original language | English |
---|---|
Article number | 172 |
Journal | Lipids in health and disease |
Volume | 11 |
Publication status | Published - 14 Dec 2012 |
Abstract
Background: Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the lipid levels of dyslipidemic subjects are widely described in the literature. However, the underlying molecular mechanisms are largely unknown. The aim of this study was to investigate the effects of n-3 PUFAs on the expression of lipid metabolism-related genes in normo- and dyslipidemic men to unveil potential genes and pathways affecting lipid metabolism. Methods. Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with six fish oil capsules per day, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. The gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction. Results: Several transcription factors (peroxisome proliferator-activated receptor α (PPARα), retinoid X receptor (RXR) α, RXRγ, hepatic nuclear factor (HNF) 6, and HNF1ß) as well as other genes related to triacylglycerol (TG) synthesis or high-density lipoprotein (HDL-C) and cholesterol metabolism (phospholipids transfer protein, ATP-binding cassette sub-family G member 5, 2-acylglycerol O-acyltransferase (MOGAT) 3, MOGAT2, diacylglycerol O-acyltransferase 1, sterol O-acyltransferase 1, apolipoprotein CII, and low-density lipoprotein receptor) were regulated after n-3 PUFA supplementation, especially in dyslipidemic men. Conclusion: Gene expression analyses revealed several possible molecular pathways by which n-3 PUFAs lower the TG level and increase the HDL-C and low-density lipoprotein level, whereupon the regulation of PPARα appear to play a central role. Trial registration. ClinicalTrials.gov (ID: NCT01089231).
Keywords
- Dyslipidemia, HNF, Omega-3 fatty acids, PPARα, RXR, TG lowering
ASJC Scopus subject areas
- Medicine(all)
- Endocrinology, Diabetes and Metabolism
- Biochemistry, Genetics and Molecular Biology(all)
- Endocrinology
- Biochemistry, Genetics and Molecular Biology(all)
- Clinical Biochemistry
- Medicine(all)
- Biochemistry, medical
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Lipids in health and disease, Vol. 11, 172, 14.12.2012.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Regulation of lipid metabolism-related gene expression in whole blood cells of normo- and dyslipidemic men after fish oil supplementation
AU - Schmidt, Simone
AU - Willers, Janina
AU - Stahl, Frank
AU - Mutz, Kai Oliver
AU - Scheper, Thomas
AU - Hahn, Andreas
AU - Schuchardt, Jan Philipp
N1 - Funding information: The supply of the study supplements from Dr. Loges + Co. GmbH, Winsen, Germany, is gratefully acknowledged. Similarly, we thank Philip Saunders who proofread the manuscript. Most of all, we would like to thank the participants who contributed their time to this project. This study was supported by the Federal Ministry of Education and Research, Germany.
PY - 2012/12/14
Y1 - 2012/12/14
N2 - Background: Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the lipid levels of dyslipidemic subjects are widely described in the literature. However, the underlying molecular mechanisms are largely unknown. The aim of this study was to investigate the effects of n-3 PUFAs on the expression of lipid metabolism-related genes in normo- and dyslipidemic men to unveil potential genes and pathways affecting lipid metabolism. Methods. Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with six fish oil capsules per day, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. The gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction. Results: Several transcription factors (peroxisome proliferator-activated receptor α (PPARα), retinoid X receptor (RXR) α, RXRγ, hepatic nuclear factor (HNF) 6, and HNF1ß) as well as other genes related to triacylglycerol (TG) synthesis or high-density lipoprotein (HDL-C) and cholesterol metabolism (phospholipids transfer protein, ATP-binding cassette sub-family G member 5, 2-acylglycerol O-acyltransferase (MOGAT) 3, MOGAT2, diacylglycerol O-acyltransferase 1, sterol O-acyltransferase 1, apolipoprotein CII, and low-density lipoprotein receptor) were regulated after n-3 PUFA supplementation, especially in dyslipidemic men. Conclusion: Gene expression analyses revealed several possible molecular pathways by which n-3 PUFAs lower the TG level and increase the HDL-C and low-density lipoprotein level, whereupon the regulation of PPARα appear to play a central role. Trial registration. ClinicalTrials.gov (ID: NCT01089231).
AB - Background: Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the lipid levels of dyslipidemic subjects are widely described in the literature. However, the underlying molecular mechanisms are largely unknown. The aim of this study was to investigate the effects of n-3 PUFAs on the expression of lipid metabolism-related genes in normo- and dyslipidemic men to unveil potential genes and pathways affecting lipid metabolism. Methods. Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with six fish oil capsules per day, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. The gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction. Results: Several transcription factors (peroxisome proliferator-activated receptor α (PPARα), retinoid X receptor (RXR) α, RXRγ, hepatic nuclear factor (HNF) 6, and HNF1ß) as well as other genes related to triacylglycerol (TG) synthesis or high-density lipoprotein (HDL-C) and cholesterol metabolism (phospholipids transfer protein, ATP-binding cassette sub-family G member 5, 2-acylglycerol O-acyltransferase (MOGAT) 3, MOGAT2, diacylglycerol O-acyltransferase 1, sterol O-acyltransferase 1, apolipoprotein CII, and low-density lipoprotein receptor) were regulated after n-3 PUFA supplementation, especially in dyslipidemic men. Conclusion: Gene expression analyses revealed several possible molecular pathways by which n-3 PUFAs lower the TG level and increase the HDL-C and low-density lipoprotein level, whereupon the regulation of PPARα appear to play a central role. Trial registration. ClinicalTrials.gov (ID: NCT01089231).
KW - Dyslipidemia
KW - HNF
KW - Omega-3 fatty acids
KW - PPARα
KW - RXR
KW - TG lowering
UR - http://www.scopus.com/inward/record.url?scp=84870922416&partnerID=8YFLogxK
U2 - 10.1186/1476-511X-11-172
DO - 10.1186/1476-511X-11-172
M3 - Article
C2 - 23241455
AN - SCOPUS:84870922416
VL - 11
JO - Lipids in health and disease
JF - Lipids in health and disease
SN - 1476-511X
M1 - 172
ER -