Details
Original language | English |
---|---|
Pages (from-to) | 719-738 |
Number of pages | 20 |
Journal | Journal of the London Mathematical Society |
Volume | 76 |
Issue number | 3 |
Publication status | Published - 20 Nov 2007 |
Externally published | Yes |
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Reducible spectral curves and the hyperkähler geometry of adjoint orbits. / Bielawski, Roger.
In: Journal of the London Mathematical Society, Vol. 76, No. 3, 20.11.2007, p. 719-738.
In: Journal of the London Mathematical Society, Vol. 76, No. 3, 20.11.2007, p. 719-738.
Research output: Contribution to journal › Article › Research › peer review
Bielawski, R 2007, 'Reducible spectral curves and the hyperkähler geometry of adjoint orbits', Journal of the London Mathematical Society, vol. 76, no. 3, pp. 719-738. https://doi.org/10.1112/jlms/jdm067
Bielawski, R. (2007). Reducible spectral curves and the hyperkähler geometry of adjoint orbits. Journal of the London Mathematical Society, 76(3), 719-738. https://doi.org/10.1112/jlms/jdm067
Bielawski R. Reducible spectral curves and the hyperkähler geometry of adjoint orbits. Journal of the London Mathematical Society. 2007 Nov 20;76(3):719-738. doi: 10.1112/jlms/jdm067
Download
@article{4c390e34e50a44e393babe526be4963b,
title = "Reducible spectral curves and the hyperk{\"a}hler geometry of adjoint orbits",
author = "Roger Bielawski",
year = "2007",
month = nov,
day = "20",
doi = "10.1112/jlms/jdm067",
language = "English",
volume = "76",
pages = "719--738",
journal = "Journal of the London Mathematical Society",
issn = "0024-6107",
publisher = "John Wiley and Sons Ltd",
number = "3",
}
Download
TY - JOUR
T1 - Reducible spectral curves and the hyperkähler geometry of adjoint orbits
AU - Bielawski, Roger
PY - 2007/11/20
Y1 - 2007/11/20
U2 - 10.1112/jlms/jdm067
DO - 10.1112/jlms/jdm067
M3 - Article
AN - SCOPUS:44649124288
VL - 76
SP - 719
EP - 738
JO - Journal of the London Mathematical Society
JF - Journal of the London Mathematical Society
SN - 0024-6107
IS - 3
ER -