Details
Original language | English |
---|---|
Article number | 3359 |
Number of pages | 13 |
Journal | Nature Communications |
Volume | 15 |
Publication status | Published - 18 Apr 2024 |
Abstract
Calcium orthophosphates (CaPs), as hydroxyapatite (HAP) in bones and teeth are the most important biomineral for humankind. While clusters in CaP nucleation have long been known, their speciation and mechanistic pathways to HAP remain debated. Evidently, mineral nucleation begins with two ions interacting in solution, fundamentally underlying solute clustering. Here, we explore CaP ion association using potentiometric methods and computer simulations. Our results agree with literature association constants for Ca2+ and H2PO4−, and Ca2+ and HPO42-, but not for Ca2+ and PO43− ions, which previously has been strongly overestimated by two orders of magnitude. Our data suggests that the discrepancy is due to a subtle, premature phase separation that can occur at low ion activity products, especially at higher pH. We provide an important revision of long used literature constants, where association of Ca2+ and PO43− actually becomes negligible below pH 9.0, in contrast to previous values. Instead, [CaHPO4]0 dominates the aqueous CaP speciation between pH ~6–10. Consequently, calcium hydrogen phosphate association is critical in cluster-based precipitation in the near-neutral pH regime, e.g., in biomineralization. The revised thermodynamics reveal significant and thus far unexplored multi-anion association in computer simulations, constituting a kinetic trap that further complicates aqueous calcium phosphate speciation.
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Nature Communications, Vol. 15, 3359, 18.04.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Redefined ion association constants have consequences for calcium phosphate nucleation and biomineralization
AU - McDonogh, David P.
AU - Gale, Julian D.
AU - Raiteri, Paolo
AU - Gebauer, Denis
N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL.
PY - 2024/4/18
Y1 - 2024/4/18
N2 - Calcium orthophosphates (CaPs), as hydroxyapatite (HAP) in bones and teeth are the most important biomineral for humankind. While clusters in CaP nucleation have long been known, their speciation and mechanistic pathways to HAP remain debated. Evidently, mineral nucleation begins with two ions interacting in solution, fundamentally underlying solute clustering. Here, we explore CaP ion association using potentiometric methods and computer simulations. Our results agree with literature association constants for Ca2+ and H2PO4−, and Ca2+ and HPO42-, but not for Ca2+ and PO43− ions, which previously has been strongly overestimated by two orders of magnitude. Our data suggests that the discrepancy is due to a subtle, premature phase separation that can occur at low ion activity products, especially at higher pH. We provide an important revision of long used literature constants, where association of Ca2+ and PO43− actually becomes negligible below pH 9.0, in contrast to previous values. Instead, [CaHPO4]0 dominates the aqueous CaP speciation between pH ~6–10. Consequently, calcium hydrogen phosphate association is critical in cluster-based precipitation in the near-neutral pH regime, e.g., in biomineralization. The revised thermodynamics reveal significant and thus far unexplored multi-anion association in computer simulations, constituting a kinetic trap that further complicates aqueous calcium phosphate speciation.
AB - Calcium orthophosphates (CaPs), as hydroxyapatite (HAP) in bones and teeth are the most important biomineral for humankind. While clusters in CaP nucleation have long been known, their speciation and mechanistic pathways to HAP remain debated. Evidently, mineral nucleation begins with two ions interacting in solution, fundamentally underlying solute clustering. Here, we explore CaP ion association using potentiometric methods and computer simulations. Our results agree with literature association constants for Ca2+ and H2PO4−, and Ca2+ and HPO42-, but not for Ca2+ and PO43− ions, which previously has been strongly overestimated by two orders of magnitude. Our data suggests that the discrepancy is due to a subtle, premature phase separation that can occur at low ion activity products, especially at higher pH. We provide an important revision of long used literature constants, where association of Ca2+ and PO43− actually becomes negligible below pH 9.0, in contrast to previous values. Instead, [CaHPO4]0 dominates the aqueous CaP speciation between pH ~6–10. Consequently, calcium hydrogen phosphate association is critical in cluster-based precipitation in the near-neutral pH regime, e.g., in biomineralization. The revised thermodynamics reveal significant and thus far unexplored multi-anion association in computer simulations, constituting a kinetic trap that further complicates aqueous calcium phosphate speciation.
UR - http://www.scopus.com/inward/record.url?scp=85190698768&partnerID=8YFLogxK
U2 - 10.1038/s41467-024-47721-7
DO - 10.1038/s41467-024-47721-7
M3 - Article
C2 - 38637527
AN - SCOPUS:85190698768
VL - 15
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
M1 - 3359
ER -