Loading [MathJax]/extensions/tex2jax.js

Real Nullstellensatz for 2-step nilpotent Lie algebras

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Philipp Schmitt
  • Matthias Schötz

Research Organisations

External Research Organisations

  • Instytut Chemii Bioorganicznej Polskiej Akademii Nauk

Details

Original languageEnglish
Pages (from-to)850-877
Number of pages28
JournalJournal of algebra
Volume666
Early online date5 Dec 2024
Publication statusPublished - 15 Mar 2025

Abstract

We prove a noncommutative real Nullstellensatz for 2-step nilpotent Lie algebras that extends the classical, commutative real Nullstellensatz as follows: Instead of the real polynomial algebra R[x1,…,xd] we consider the universal enveloping -algebra of a 2-step nilpotent real Lie algebra (i.e. the universal enveloping algebra of its complexification with the canonical -involution). Evaluation at points of Rd is then generalized to evaluation through integrable -representations, which in this case are equivalent to filtered -algebra morphisms from the universal enveloping -algebra to a Weyl algebra. Our Nullstellensatz characterizes the common kernels of a set of such -algebra morphisms as the real ideals of the universal enveloping -algebra.

Keywords

    -Algebra, -Representations, Non-commutative real algebraic geometry, Nullstellensatz, Universal enveloping algebra

ASJC Scopus subject areas

Cite this

Real Nullstellensatz for 2-step nilpotent Lie algebras. / Schmitt, Philipp; Schötz, Matthias.
In: Journal of algebra, Vol. 666, 15.03.2025, p. 850-877.

Research output: Contribution to journalArticleResearchpeer review

Schmitt P, Schötz M. Real Nullstellensatz for 2-step nilpotent Lie algebras. Journal of algebra. 2025 Mar 15;666:850-877. Epub 2024 Dec 5. doi: 10.48550/arXiv.2403.06773, 10.1016/j.jalgebra.2024.12.001
Schmitt, Philipp ; Schötz, Matthias. / Real Nullstellensatz for 2-step nilpotent Lie algebras. In: Journal of algebra. 2025 ; Vol. 666. pp. 850-877.
Download
@article{dcffba0aa5c14250a9fb489fe81f511b,
title = "Real Nullstellensatz for 2-step nilpotent Lie algebras",
abstract = "We prove a noncommutative real Nullstellensatz for 2-step nilpotent Lie algebras that extends the classical, commutative real Nullstellensatz as follows: Instead of the real polynomial algebra R[x1,…,xd] we consider the universal enveloping ⁎-algebra of a 2-step nilpotent real Lie algebra (i.e. the universal enveloping algebra of its complexification with the canonical ⁎-involution). Evaluation at points of Rd is then generalized to evaluation through integrable ⁎-representations, which in this case are equivalent to filtered ⁎-algebra morphisms from the universal enveloping ⁎-algebra to a Weyl algebra. Our Nullstellensatz characterizes the common kernels of a set of such ⁎-algebra morphisms as the real ideals of the universal enveloping ⁎-algebra.",
keywords = "-Algebra, -Representations, Non-commutative real algebraic geometry, Nullstellensatz, Universal enveloping algebra",
author = "Philipp Schmitt and Matthias Sch{\"o}tz",
note = "Publisher Copyright: {\textcopyright} 2024 The Authors",
year = "2025",
month = mar,
day = "15",
doi = "10.48550/arXiv.2403.06773",
language = "English",
volume = "666",
pages = "850--877",
journal = "Journal of algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",

}

Download

TY - JOUR

T1 - Real Nullstellensatz for 2-step nilpotent Lie algebras

AU - Schmitt, Philipp

AU - Schötz, Matthias

N1 - Publisher Copyright: © 2024 The Authors

PY - 2025/3/15

Y1 - 2025/3/15

N2 - We prove a noncommutative real Nullstellensatz for 2-step nilpotent Lie algebras that extends the classical, commutative real Nullstellensatz as follows: Instead of the real polynomial algebra R[x1,…,xd] we consider the universal enveloping ⁎-algebra of a 2-step nilpotent real Lie algebra (i.e. the universal enveloping algebra of its complexification with the canonical ⁎-involution). Evaluation at points of Rd is then generalized to evaluation through integrable ⁎-representations, which in this case are equivalent to filtered ⁎-algebra morphisms from the universal enveloping ⁎-algebra to a Weyl algebra. Our Nullstellensatz characterizes the common kernels of a set of such ⁎-algebra morphisms as the real ideals of the universal enveloping ⁎-algebra.

AB - We prove a noncommutative real Nullstellensatz for 2-step nilpotent Lie algebras that extends the classical, commutative real Nullstellensatz as follows: Instead of the real polynomial algebra R[x1,…,xd] we consider the universal enveloping ⁎-algebra of a 2-step nilpotent real Lie algebra (i.e. the universal enveloping algebra of its complexification with the canonical ⁎-involution). Evaluation at points of Rd is then generalized to evaluation through integrable ⁎-representations, which in this case are equivalent to filtered ⁎-algebra morphisms from the universal enveloping ⁎-algebra to a Weyl algebra. Our Nullstellensatz characterizes the common kernels of a set of such ⁎-algebra morphisms as the real ideals of the universal enveloping ⁎-algebra.

KW - -Algebra

KW - -Representations

KW - Non-commutative real algebraic geometry

KW - Nullstellensatz

KW - Universal enveloping algebra

UR - http://www.scopus.com/inward/record.url?scp=85212319470&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2403.06773

DO - 10.48550/arXiv.2403.06773

M3 - Article

AN - SCOPUS:85212319470

VL - 666

SP - 850

EP - 877

JO - Journal of algebra

JF - Journal of algebra

SN - 0021-8693

ER -