Details
Original language | English |
---|---|
Pages (from-to) | 1126-1139 |
Number of pages | 14 |
Journal | American mineralogist |
Volume | 105 |
Issue number | 8 |
Early online date | 11 Aug 2020 |
Publication status | Published - 26 Aug 2020 |
Abstract
Transport and deposition of copper in the Earth’s crust are mainly controlled by the solubility of Cu-bearing phases and the speciation of Cu in magmatic-hydrothermal fluids. To improve our understanding of copper mobilization by hydrothermal fluids, we conducted an experimental study on the interaction between Cu-bearing phases (metallic copper, Cu2O, CuCl) and aqueous chloride solutions (H2O ± NaCl ± HCl; with Cl concentrations of 0 to 4.3 mol kg-1). The experiments were run in rapid heat/rapid quench cold-seal pressure vessels at 800 °C, 200 MPa, and logfO2 ~ NNO+2.3. Either Cu or Au capsules were used as containers. The reaction products were sampled in situ by the entrapment of synthetic fluid inclusions in quartz. Fluid composition was subsequently determined by analyzing individual fluid inclusions using a freezing cell and laser ablation inductively coupled plasma-mass spectrometry. Our results show that large isolated and isometric inclusions, free of late-stage modifications, can be preserved after the experiment even when using a high cooling rate of 25 K s-1. The obtained results demonstrate that: (1) reaction between native Cu, NaCl solution, and quartz (± silica gel) leads to the coexistence of fluid inclusions and Na-bearing silicate melt inclusions. Micrometer- to submicrometer-sized cuprite (Cu2O) crystals have been observed in both types of the inclusions, and they are formed most probably due to the dissociation of CuOH. (2) When Cu0 reacts with HCl and CuCl solutions, or Cu+ reacts with NaCl solution, nantokite (CuCl) formed due to oversaturation has been found in fluid inclusion. Copper concentration in the fluid shows a strong positive dependence on the initial chlorine content, with Cu/Cl molal ratios varying from 1:9 to 1:1 in case 1 and case 2, respectively. When Cl is fixed to 1.5 m, initial fluid acidity has a major control on the Cu content, i.e., 0.17 ± 0.09 and 1.29 ± 0.57 m Cu were measured in fluids of case 1 and case 2, respectively. Cu solubility in pure water and in 1.5 m NaCl solutions are 0.004 ± 0.002 and 0.16 ± 0.07 m, respectively. The main responsible Cu-bearing complexes are CuOH(H2O)x in water, NaCuCl2 in NaCl solutions and HCuCl2 in alkali-free solutions. These results provide quantitative constraints on the mobility of Cu in hydrothermal solutions and confirm that Cl is a very important ligand responsible for Cu transport. The first observation that silicate melt can be generated in the fluid-dominated and native-copper-bearing system implies that transitional thermosilicate liquids can coexist with metal-rich fluids and may enhance Cu mobility in magmatic-hydrothermal systems. This may have important implications for the formation of Cu deposits in the systems with low S activities.
Keywords
- Cuprite, Melt Inclusions, Mineral, Nantokite, Native copper, Proper sealing; Applications of Fluid, Quench rate, Silicate melt inclusions, Synthetic fluid inclusions
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geophysics
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: American mineralogist, Vol. 105, No. 8, 26.08.2020, p. 1126-1139.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Reaction between Cu-bearing minerals and hydrothermal fluids at 800 °C and 200 MPa
T2 - Constraints from synthetic fluid inclusions
AU - Qi, Dongmei
AU - Behrens, Harald
AU - Botcharnikov, Roman
AU - Derrey, Insa
AU - Holtz, Francois
AU - Zhang, Chao
AU - Li, Xiaoyan
AU - Horn, Ingo
N1 - Funding information: We thank Moritz Albrecht, Martin Oeser-Rabe, Ulrich Kroll, and Julian Feige for their technical support. We also thank Hongwu Xu and Kyle Ashley for editorial handling as well as two reviewers (Adam Simon and Ryan Mathur) for their constructive and thorough comments on this manuscript. This research was supported by the German Academic Exchange Service (DAAD-57076462) and Graduate School GeoFluxes.
PY - 2020/8/26
Y1 - 2020/8/26
N2 - Transport and deposition of copper in the Earth’s crust are mainly controlled by the solubility of Cu-bearing phases and the speciation of Cu in magmatic-hydrothermal fluids. To improve our understanding of copper mobilization by hydrothermal fluids, we conducted an experimental study on the interaction between Cu-bearing phases (metallic copper, Cu2O, CuCl) and aqueous chloride solutions (H2O ± NaCl ± HCl; with Cl concentrations of 0 to 4.3 mol kg-1). The experiments were run in rapid heat/rapid quench cold-seal pressure vessels at 800 °C, 200 MPa, and logfO2 ~ NNO+2.3. Either Cu or Au capsules were used as containers. The reaction products were sampled in situ by the entrapment of synthetic fluid inclusions in quartz. Fluid composition was subsequently determined by analyzing individual fluid inclusions using a freezing cell and laser ablation inductively coupled plasma-mass spectrometry. Our results show that large isolated and isometric inclusions, free of late-stage modifications, can be preserved after the experiment even when using a high cooling rate of 25 K s-1. The obtained results demonstrate that: (1) reaction between native Cu, NaCl solution, and quartz (± silica gel) leads to the coexistence of fluid inclusions and Na-bearing silicate melt inclusions. Micrometer- to submicrometer-sized cuprite (Cu2O) crystals have been observed in both types of the inclusions, and they are formed most probably due to the dissociation of CuOH. (2) When Cu0 reacts with HCl and CuCl solutions, or Cu+ reacts with NaCl solution, nantokite (CuCl) formed due to oversaturation has been found in fluid inclusion. Copper concentration in the fluid shows a strong positive dependence on the initial chlorine content, with Cu/Cl molal ratios varying from 1:9 to 1:1 in case 1 and case 2, respectively. When Cl is fixed to 1.5 m, initial fluid acidity has a major control on the Cu content, i.e., 0.17 ± 0.09 and 1.29 ± 0.57 m Cu were measured in fluids of case 1 and case 2, respectively. Cu solubility in pure water and in 1.5 m NaCl solutions are 0.004 ± 0.002 and 0.16 ± 0.07 m, respectively. The main responsible Cu-bearing complexes are CuOH(H2O)x in water, NaCuCl2 in NaCl solutions and HCuCl2 in alkali-free solutions. These results provide quantitative constraints on the mobility of Cu in hydrothermal solutions and confirm that Cl is a very important ligand responsible for Cu transport. The first observation that silicate melt can be generated in the fluid-dominated and native-copper-bearing system implies that transitional thermosilicate liquids can coexist with metal-rich fluids and may enhance Cu mobility in magmatic-hydrothermal systems. This may have important implications for the formation of Cu deposits in the systems with low S activities.
AB - Transport and deposition of copper in the Earth’s crust are mainly controlled by the solubility of Cu-bearing phases and the speciation of Cu in magmatic-hydrothermal fluids. To improve our understanding of copper mobilization by hydrothermal fluids, we conducted an experimental study on the interaction between Cu-bearing phases (metallic copper, Cu2O, CuCl) and aqueous chloride solutions (H2O ± NaCl ± HCl; with Cl concentrations of 0 to 4.3 mol kg-1). The experiments were run in rapid heat/rapid quench cold-seal pressure vessels at 800 °C, 200 MPa, and logfO2 ~ NNO+2.3. Either Cu or Au capsules were used as containers. The reaction products were sampled in situ by the entrapment of synthetic fluid inclusions in quartz. Fluid composition was subsequently determined by analyzing individual fluid inclusions using a freezing cell and laser ablation inductively coupled plasma-mass spectrometry. Our results show that large isolated and isometric inclusions, free of late-stage modifications, can be preserved after the experiment even when using a high cooling rate of 25 K s-1. The obtained results demonstrate that: (1) reaction between native Cu, NaCl solution, and quartz (± silica gel) leads to the coexistence of fluid inclusions and Na-bearing silicate melt inclusions. Micrometer- to submicrometer-sized cuprite (Cu2O) crystals have been observed in both types of the inclusions, and they are formed most probably due to the dissociation of CuOH. (2) When Cu0 reacts with HCl and CuCl solutions, or Cu+ reacts with NaCl solution, nantokite (CuCl) formed due to oversaturation has been found in fluid inclusion. Copper concentration in the fluid shows a strong positive dependence on the initial chlorine content, with Cu/Cl molal ratios varying from 1:9 to 1:1 in case 1 and case 2, respectively. When Cl is fixed to 1.5 m, initial fluid acidity has a major control on the Cu content, i.e., 0.17 ± 0.09 and 1.29 ± 0.57 m Cu were measured in fluids of case 1 and case 2, respectively. Cu solubility in pure water and in 1.5 m NaCl solutions are 0.004 ± 0.002 and 0.16 ± 0.07 m, respectively. The main responsible Cu-bearing complexes are CuOH(H2O)x in water, NaCuCl2 in NaCl solutions and HCuCl2 in alkali-free solutions. These results provide quantitative constraints on the mobility of Cu in hydrothermal solutions and confirm that Cl is a very important ligand responsible for Cu transport. The first observation that silicate melt can be generated in the fluid-dominated and native-copper-bearing system implies that transitional thermosilicate liquids can coexist with metal-rich fluids and may enhance Cu mobility in magmatic-hydrothermal systems. This may have important implications for the formation of Cu deposits in the systems with low S activities.
KW - Cuprite
KW - Melt Inclusions
KW - Mineral
KW - Nantokite
KW - Native copper
KW - Proper sealing; Applications of Fluid
KW - Quench rate
KW - Silicate melt inclusions
KW - Synthetic fluid inclusions
UR - http://www.scopus.com/inward/record.url?scp=85101073896&partnerID=8YFLogxK
U2 - 10.2138/am-2020-7114
DO - 10.2138/am-2020-7114
M3 - Article
AN - SCOPUS:85101073896
VL - 105
SP - 1126
EP - 1139
JO - American mineralogist
JF - American mineralogist
SN - 0003-004X
IS - 8
ER -