Details
Original language | English |
---|---|
Article number | 231107 |
Journal | Physical review letters |
Volume | 123 |
Issue number | 23 |
Publication status | Published - 5 Dec 2019 |
Abstract
The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical review letters, Vol. 123, No. 23, 231107, 05.12.2019.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy
AU - The LIGO Scientific Collaboration
AU - Bode, Nina
AU - Booker, Phillip
AU - Liu, J.
AU - Meylahn, Fabian
AU - Willke, Benno
N1 - Funding Information: LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation, and operates under Cooperative Agreement No. PHY-0757058. Advanced LIGO was built under Grant No. PHY-0823459. The authors also gratefully acknowledge the support of the Australian Research Council under the ARC Centre of Excellence for Gravitational Wave Discovery, Grant No. CE170100004 and Linkage Infrastructure, Equipment and Facilities Grant No. LE170100217; the National Science Foundation Graduate Research Fellowship under Grant No. 1122374; the Science and Technology Facilities Council of the United Kingdom, and the LIGO Scientific Collaboration Fellows program. [1] 1 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. Lett. 116 , 061102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102 [2] 2 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. X 9 , 031040 ( 2019 ). PRXHAE 2160-3308 10.1103/PhysRevX.9.031040 [3] 3 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. Lett. 119 , 161101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101 [4] 4 A. Buikema (to be published). [5] 5 F. Acernese ( Virgo Collaboration ) and H. Vahlbruch , following Letter, Phys. Rev. Lett. 123 , 231108 ( 2019 ). PRLTAO 0031-9007 10.1103/PhysRevLett.123.231108 [6] 6 J. Aasi ( LIGO Scientific Collaboration ) , Classical Quantum Gravity 32 , 074001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/7/074001 [7] 7 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. Lett. 116 , 131103 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.131103 [8] 8 C. M. Caves , Phys. Rev. Lett. 45 , 75 ( 1980 ). PRLTAO 0031-9007 10.1103/PhysRevLett.45.75 [9] 9 D. E. McClelland , N. Mavalvala , Y. Chen , and R. Schnabel , Laser Photonics Rev. 5 , 677 ( 2011 ). LPRAB8 1863-8899 10.1002/lpor.201000034 [10] 10 L. Barsotti , J. Harms , and R. Schnabel , Rep. Prog. Phys. 82 , 016905 ( 2018 ). RPPHAG 0034-4885 [11] 11 LIGO Scientific Collaboration , Nat. Phys. 7 , 962 ( 2011 ). NPAHAX 1745-2473 10.1038/nphys2083 [12] 12 H. Grote , K. Danzmann , K. L. Dooley , R. Schnabel , J. Slutsky , and H. Vahlbruch , Phys. Rev. Lett. 110 , 181101 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.110.181101 [13] 13 J. Aasi , Nat. Photonics 7 , 613 ( 2013 ). NPAHBY 1749-4885 10.1038/nphoton.2013.177 [14] 14 LIGO and Virgo Collaborations , https://gracedb.ligo.org/latest/ . [15] 15 LIGO and Virgo Collaborations , https://gcn.gsfc.nasa.gov/gcn3/24168.gcn3 . [16] 16 A. Buonanno and Y. Chen , Phys. Rev. D 64 , 042006 ( 2001 ). PRVDAQ 0556-2821 10.1103/PhysRevD.64.042006 [17] 17 M. Punturo , Classical Quantum Gravity 27 , 194002 ( 2010 ). CQGRDG 0264-9381 10.1088/0264-9381/27/19/194002 [18] 18 B. P. Abbott ( LIGO Scientific Collaboration ) , Classical Quantum Gravity 34 , 044001 ( 2017 ). CQGRDG 0264-9381 10.1088/1361-6382/aa51f4 [19] 19 C. Caves , Phys. Rev. D 23 , 1693 ( 1981 ). PRVDAQ 0556-2821 10.1103/PhysRevD.23.1693 [20] 20 D. V. Martynov , Phys. Rev. D 93 , 112004 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.112004 [21] 21 A. F. Brooks , D. Hosken , J. Munch , P. J. Veitch , Z. Yan , C. Zhao , Y. Fan , L. Ju , D. Blair , P. Willems , B. Slagmolen , and J. Degallaix , Appl. Opt. 48 , 355 ( 2009 ). APOPAI 0003-6935 10.1364/AO.48.000355 [22] 22 K. L. Dooley , L. Barsotti , R. X. Adhikari , M. Evans , T. T. Fricke , P. Fritschel , V. Frolov , K. Kawabe , and N. Smith-Lefebvre , J. Opt. Soc. Am. A 30 , 2618 ( 2013 ). JOAOD6 0740-3232 10.1364/JOSAA.30.002618 [23] 23 M. Evans , S. Gras , P. Fritschel , J. Miller , L. Barsotti , Phys. Rev. Lett. 114 , 161102 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.114.161102 [24] 24 H. Y. Chen , D. E. Holz , J. Miller , M. Evans , S. Vitale , and J. Creighton , arXiv:1709.08079 . [25] The BNS range corresponds to the radius of the sensitive volume of the Universe for 1.4 – 1.4 M ⊙ neutron star binary systems (assuming a detection threshold with matched-filter signal-to-noise ratio of 8 in a single detector), integrated over the interferometer antenna pattern, and averaged over all binary inclinations and orientations. Although BNS signals end above a kHz and typical BBH signals end around 500 Hz, both types of signals accumulate most of their SNR in the 30–300 Hz band. Thus the impact of squeezing on detector range is similar for both BNS and BBH. [26] 26 H. Yu (to be published). [27] 27 S. S. Y. Chua , Classical Quantum Gravity 31 , 035017 ( 2014 ). CQGRDG 0264-9381 10.1088/0264-9381/31/3/035017 [28] 28 A. Fernandez-Galiana , arXiv:1901.09666 . [29] 29 E. Oelker , L. Barsotti , S. Dwyer , D. Sigg , and N. Mavalvala , Opt. Express 22 , 21106 ( 2014 ). OPEXFF 1094-4087 10.1364/OE.22.021106 [30] 30 A. Wade , G. L. Mansell , S. S. Y. Chua , Robert L. Ward , Bram J. J. Slagmolen , Daniel A. Shaddock , and David E. McClelland , Sci. Rep. 5 , 18052 ( 2015 ). SRCEC3 2045-2322 10.1038/srep18052 [31] 31 S. S. Y. Chua , M. S. Stefszky , C. M. Mow-Lowry , B. C. Buchler , S. Dwyer , D. A. Shaddock , P. K. Lam , and D. E. McClelland , Opt. Lett. 36 , 4680 ( 2011 ). OPLEDP 0146-9592 10.1364/OL.36.004680 [32] 32 E. Oelker , G. Mansell , M. Tse , J. Miller , F. Matichard , L. Barsotti , P. Fritschel , D. E. McClelland , M. Evans , and N. Mavalvala , Optica 3 , 682 ( 2016 ). OPTIC8 2334-2536 10.1364/OPTICA.3.000682 [33] 33 M. S. Stefszky , C. M. Mow-Lowry , S. S. Y. Chua , D. A. Shaddock , B. C. Buchler , H. Vahlbruch , A. Khalaidovski , R. Schnabel , P. K. Lam , and D. E. McClelland , Classical Quantum Gravity 29 , 145015 ( 2012 ). CQGRDG 0264-9381 10.1088/0264-9381/29/14/145015 [34] 34 B. J. J. Slagmolen , A. J. Mullavey , J. Miller , D. E. McClelland , and P. Fritschel , Rev. Sci. Instrum. 82 , 125108 ( 2011 ). RSINAK 0034-6748 10.1063/1.3669532 [35] 35 H. Vahlbruch , S. Chelkowski , B. Hage , A. Franzen , K. Danzmann , and R. Schnabel , Phys. Rev. Lett. 97 , 011101 ( 2006 ). PRLTAO 0031-9007 10.1103/PhysRevLett.97.011101 [36] 36 S. Chelkowski , H. Vahlbruch , K. Danzmann , and R. Schnabel , Phys. Rev. A 75 , 043814 ( 2007 ). PLRAAN 1050-2947 10.1103/PhysRevA.75.043814 [37] 37 M. Tse (to be published). [38] 38 E. Schreiber , K. L. Dooley , H. Vahlbruch , C. Affeldt , A. Bisht , J. R. Leong , J. Lough , M. Prijatelj , J. Slutsky , M. Was , H. Wittel , K. Danzmann , and H. Grote , Opt. Express 24 , 146 ( 2016 ). OPEXFF 1094-4087 10.1364/OE.24.000146 [39] 39 S. Dwyer , Opt. Express 21 , 19047 ( 2013 ). OPEXFF 1094-4087 10.1364/OE.21.019047 [40] 40 P. Kwee , J. Miller , T. Isogai , L. Barsotti , and M. Evans , Phys. Rev. D 90 , 062006 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.90.062006 [41] 41 L. McCuller (to be published). [42] 42 J. Cripe , N. Aggarwal , R. Lanza , Nature (London) 568 , 364 ( 2019 ). NATUAS 0028-0836 10.1038/s41586-019-1051-4 [43] 43 M. Yap , Nat. Photonics 568 ( 2019 ). NPAHBY 1749-4885 10.1038/s41566-019-0527-y [44] 44 H. J. Kimble , Y. Levin , A. B. Matsko , K. S. Thorne , and S. P. Vyatchanin , Phys. Rev. D 65 , 022002 ( 2001 ). PRVDAQ 0556-2821 10.1103/PhysRevD.65.022002 [45] 45 E. Oelker , T. Isogai , J. Miller , M. Tse , L. Barsotti , N. Mavalvala , and M. Evans , Phys. Rev. Lett. 116 , 041102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.041102 [46] 46 M. Evans , L. Barsotti , P. Kwee , J. Harms , and H. Miao , Phys. Rev. D 88 , 022002 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.022002 [47] 47 J. Miller , L. Barsotti , S. Vitale , P. Fritschel , M. Evans , and D. Sigg , Phys. Rev. D 91 , 062005 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.062005 [48] 48 E. Genin , M. Mantovani , G. Pillant , C. D. Rossi , L. Pinard , C. Michel , M. Gosselin , and J. Casanueva , Appl. Opt. 57 , 9705 ( 2018 ). APOPAI 0003-6935 10.1364/AO.57.009705 [49] 49 L. Barsotti , https://dcc.ligo.org/LIGO-T1800042/public ( 2018 ). [50] 50 R. Lynch , S. Vitale , L. Barsotti , S. Dwyer , and M. Evans , Phys. Rev. D 91 , 044032 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.044032 [51] 51 A. Torres-Rivas , K. Chatziioannou , A. Bauswein , and J. A. Clark , Phys. Rev. D 99 , 044014 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.044014
PY - 2019/12/5
Y1 - 2019/12/5
N2 - The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).
AB - The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).
UR - http://www.scopus.com/inward/record.url?scp=85076778586&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.123.231107
DO - 10.1103/PhysRevLett.123.231107
M3 - Article
VL - 123
JO - Physical review letters
JF - Physical review letters
SN - 0031-9007
IS - 23
M1 - 231107
ER -