Details
Original language | English |
---|---|
Qualification | Doctor rerum naturalium |
Awarding Institution | |
Supervised by |
|
Date of Award | 20 Dec 2023 |
Place of Publication | Hannover |
Publication status | Published - 2024 |
Abstract
We start with a general introduction to operator algebras and algebraic quantum theory. Thereby, we highlight some of the mathematical details that are often taken for granted while working with purely quantum systems. Consequently, we discuss several possibilities and their advantages respectively disadvantages in describing classical systems analogously to the quantum formalism. The key takeaway is that there is no candidate for a classical state space or observable algebra that can be put easily alongside a quantum system to form a hybrid and simultaneously fulfills all of our requirements for such a partially quantum and partially classical system. Although these straightforward hybrid systems are not sufficient enough to represent a general approach, we use one of the candidates to prove an intermediate result, which showcases the advantages of a consequent hybrid ansatz: We provide a hybrid generalization of classical diffusion generators where the exchange of information between the classical and the quantum side is controlled by the induced noise on the quantum system.
Then, we present solutions for our initial tasks. We start with a CCR-algebra where some variables may commute with all others and hence generate a classical subsystem. After clarifying the necessary representations, our hybrid states are given by continuous characteristic functions, and the according state space is equal to the state space of a non-unital C*-algebra. While this C*-algebra is not a suitable candidate for an observable algebra itself, we describe several possible subsets in its bidual which can serve this purpose. They can be more easily characterized and will also allow for a straightforward definition of a proper Heisenberg picture. The subsets are given by operator-valued functions on the classical phase space with varying degrees of regularity, such as universal measurability or strong*-continuity. We describe quasifree channels and their properties, including a state-channel correspondence, a factorization theorem, and some basic physical operations. All this works solely on the assumption of a quasifree system, but we also show that the more famous subclass of Gaussian systems fits well within this formulation and behaves as expected.
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Hannover, 2024. 187 p.
Research output: Thesis › Doctoral thesis
}
TY - BOOK
T1 - Quantum-Classical hybrid systems and their quasifree transformations
AU - Dammeier, Lars
PY - 2024
Y1 - 2024
N2 - The focus of this work is the description of a framework for quantum-classical hybrid systems. The main emphasis lies on continuous variable systems described by canonical commutation relations and, more precisely, the quasifree case. Here, we are going to solve two main tasks: The first is to rigorously define spaces of states and observables, which are naturally connected within the general structure. Secondly, we want to describe quasifree channels for which both the Schrödinger picture and the Heisenberg picture are well defined.We start with a general introduction to operator algebras and algebraic quantum theory. Thereby, we highlight some of the mathematical details that are often taken for granted while working with purely quantum systems. Consequently, we discuss several possibilities and their advantages respectively disadvantages in describing classical systems analogously to the quantum formalism. The key takeaway is that there is no candidate for a classical state space or observable algebra that can be put easily alongside a quantum system to form a hybrid and simultaneously fulfills all of our requirements for such a partially quantum and partially classical system. Although these straightforward hybrid systems are not sufficient enough to represent a general approach, we use one of the candidates to prove an intermediate result, which showcases the advantages of a consequent hybrid ansatz: We provide a hybrid generalization of classical diffusion generators where the exchange of information between the classical and the quantum side is controlled by the induced noise on the quantum system.Then, we present solutions for our initial tasks. We start with a CCR-algebra where some variables may commute with all others and hence generate a classical subsystem. After clarifying the necessary representations, our hybrid states are given by continuous characteristic functions, and the according state space is equal to the state space of a non-unital C*-algebra. While this C*-algebra is not a suitable candidate for an observable algebra itself, we describe several possible subsets in its bidual which can serve this purpose. They can be more easily characterized and will also allow for a straightforward definition of a proper Heisenberg picture. The subsets are given by operator-valued functions on the classical phase space with varying degrees of regularity, such as universal measurability or strong*-continuity. We describe quasifree channels and their properties, including a state-channel correspondence, a factorization theorem, and some basic physical operations. All this works solely on the assumption of a quasifree system, but we also show that the more famous subclass of Gaussian systems fits well within this formulation and behaves as expected.
AB - The focus of this work is the description of a framework for quantum-classical hybrid systems. The main emphasis lies on continuous variable systems described by canonical commutation relations and, more precisely, the quasifree case. Here, we are going to solve two main tasks: The first is to rigorously define spaces of states and observables, which are naturally connected within the general structure. Secondly, we want to describe quasifree channels for which both the Schrödinger picture and the Heisenberg picture are well defined.We start with a general introduction to operator algebras and algebraic quantum theory. Thereby, we highlight some of the mathematical details that are often taken for granted while working with purely quantum systems. Consequently, we discuss several possibilities and their advantages respectively disadvantages in describing classical systems analogously to the quantum formalism. The key takeaway is that there is no candidate for a classical state space or observable algebra that can be put easily alongside a quantum system to form a hybrid and simultaneously fulfills all of our requirements for such a partially quantum and partially classical system. Although these straightforward hybrid systems are not sufficient enough to represent a general approach, we use one of the candidates to prove an intermediate result, which showcases the advantages of a consequent hybrid ansatz: We provide a hybrid generalization of classical diffusion generators where the exchange of information between the classical and the quantum side is controlled by the induced noise on the quantum system.Then, we present solutions for our initial tasks. We start with a CCR-algebra where some variables may commute with all others and hence generate a classical subsystem. After clarifying the necessary representations, our hybrid states are given by continuous characteristic functions, and the according state space is equal to the state space of a non-unital C*-algebra. While this C*-algebra is not a suitable candidate for an observable algebra itself, we describe several possible subsets in its bidual which can serve this purpose. They can be more easily characterized and will also allow for a straightforward definition of a proper Heisenberg picture. The subsets are given by operator-valued functions on the classical phase space with varying degrees of regularity, such as universal measurability or strong*-continuity. We describe quasifree channels and their properties, including a state-channel correspondence, a factorization theorem, and some basic physical operations. All this works solely on the assumption of a quasifree system, but we also show that the more famous subclass of Gaussian systems fits well within this formulation and behaves as expected.
U2 - 10.15488/15893
DO - 10.15488/15893
M3 - Doctoral thesis
CY - Hannover
ER -