Details
Original language | English |
---|---|
Pages (from-to) | 387-406 |
Number of pages | 20 |
Journal | Plant molecular biology |
Volume | 59 |
Publication status | Published - Oct 2005 |
Abstract
To investigate the molecular mechanisms underlying susceptibility of legumes to the root pathogen Aphanomyces euteiches (oomycota), comparative proteomic studies have been carried out. In a first approach, we have analysed two Medicago truncatula lines of the French CORE collection (F83.005-5 (R2002) and F83.005-9 (R2002)), which showed either increased or decreased susceptibility to A. euteiches as compared to the widely adopted line A17. Several proteins were identified to be differentially induced after pathogen challenge in the two M. truncatula accessions with altered disease susceptibility, whereof proteins with increased abundances in the more resistant line F83.005-9 could be involved in mechanisms that lead to an improved disease resistance. Among these proteins, we identified two proteasome alpha subunits, which might be involved in defense response. To broaden our studies on A. euteiches-tolerance of M. truncatula, we investigated two other phenomena that lead to an either increased A. euteiches-resistance or to an enhanced susceptibility. The topic of an enhanced plant resistance to A. euteiches was studied in plants showing a bioprotective effect of a pre-established arbuscular mycorrhiza (AM) symbiosis. Evaluation of root fresh weights and pathogen spreading in the root system clearly indicate that mycorrhizal plants show increased A. euteiches-resistance as compared to non-mycorrhizal plants. Proteome analyses revealed the induction of similar protein patterns as in the M. truncatula accessions with comparatively high resistance level to A. euteiches. In a third approach, increased A. euteiches susceptibility was effected by exogenous abscisic acid (ABA) application prior to root infection. Evaluation of the abundance levels of a group of pathogenesis related class 10 (PR10)-like proteins, which were previously identified to be regulated after A. euteiches infection, revealed a correlation between the abundance levels of these proteins and the A. euteiches infection level or severity.
Keywords
- ABA, Aphanomyces euteiches, Medicago truncatula, PR 10, Proteasome, Proteomics
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Agronomy and Crop Science
- Biochemistry, Genetics and Molecular Biology(all)
- Genetics
- Agricultural and Biological Sciences(all)
- Plant Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Plant molecular biology, Vol. 59, 10.2005, p. 387-406.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula
AU - Colditz, Frank
AU - Braun, Hans Peter
AU - Jacquet, Christophe
AU - Niehaus, Karsten
AU - Krajinski, Franziska
N1 - Funding information: The authors thank Jean-Marie Prospéri, INRA-SGAP Laboratory, Laboratoire de Ressources Génétiques et d’Amélioration des Luzernes médit-erranéennes, F34130 Mauguio, France, for kindly providing us seeds of the two French M. truncatula lines F83.005-5 and F83.005-9 (R2002). Further, we thank Mrs Nadine Küpper, Lehrstuhl für Genetik, Fakultät für Biologie, University of Bielefeld, for her assistance performing the MALDITOF-MS and database analyses. This work was supported by the Deutsche Forschungs-gemeinschaft DFG.
PY - 2005/10
Y1 - 2005/10
N2 - To investigate the molecular mechanisms underlying susceptibility of legumes to the root pathogen Aphanomyces euteiches (oomycota), comparative proteomic studies have been carried out. In a first approach, we have analysed two Medicago truncatula lines of the French CORE collection (F83.005-5 (R2002) and F83.005-9 (R2002)), which showed either increased or decreased susceptibility to A. euteiches as compared to the widely adopted line A17. Several proteins were identified to be differentially induced after pathogen challenge in the two M. truncatula accessions with altered disease susceptibility, whereof proteins with increased abundances in the more resistant line F83.005-9 could be involved in mechanisms that lead to an improved disease resistance. Among these proteins, we identified two proteasome alpha subunits, which might be involved in defense response. To broaden our studies on A. euteiches-tolerance of M. truncatula, we investigated two other phenomena that lead to an either increased A. euteiches-resistance or to an enhanced susceptibility. The topic of an enhanced plant resistance to A. euteiches was studied in plants showing a bioprotective effect of a pre-established arbuscular mycorrhiza (AM) symbiosis. Evaluation of root fresh weights and pathogen spreading in the root system clearly indicate that mycorrhizal plants show increased A. euteiches-resistance as compared to non-mycorrhizal plants. Proteome analyses revealed the induction of similar protein patterns as in the M. truncatula accessions with comparatively high resistance level to A. euteiches. In a third approach, increased A. euteiches susceptibility was effected by exogenous abscisic acid (ABA) application prior to root infection. Evaluation of the abundance levels of a group of pathogenesis related class 10 (PR10)-like proteins, which were previously identified to be regulated after A. euteiches infection, revealed a correlation between the abundance levels of these proteins and the A. euteiches infection level or severity.
AB - To investigate the molecular mechanisms underlying susceptibility of legumes to the root pathogen Aphanomyces euteiches (oomycota), comparative proteomic studies have been carried out. In a first approach, we have analysed two Medicago truncatula lines of the French CORE collection (F83.005-5 (R2002) and F83.005-9 (R2002)), which showed either increased or decreased susceptibility to A. euteiches as compared to the widely adopted line A17. Several proteins were identified to be differentially induced after pathogen challenge in the two M. truncatula accessions with altered disease susceptibility, whereof proteins with increased abundances in the more resistant line F83.005-9 could be involved in mechanisms that lead to an improved disease resistance. Among these proteins, we identified two proteasome alpha subunits, which might be involved in defense response. To broaden our studies on A. euteiches-tolerance of M. truncatula, we investigated two other phenomena that lead to an either increased A. euteiches-resistance or to an enhanced susceptibility. The topic of an enhanced plant resistance to A. euteiches was studied in plants showing a bioprotective effect of a pre-established arbuscular mycorrhiza (AM) symbiosis. Evaluation of root fresh weights and pathogen spreading in the root system clearly indicate that mycorrhizal plants show increased A. euteiches-resistance as compared to non-mycorrhizal plants. Proteome analyses revealed the induction of similar protein patterns as in the M. truncatula accessions with comparatively high resistance level to A. euteiches. In a third approach, increased A. euteiches susceptibility was effected by exogenous abscisic acid (ABA) application prior to root infection. Evaluation of the abundance levels of a group of pathogenesis related class 10 (PR10)-like proteins, which were previously identified to be regulated after A. euteiches infection, revealed a correlation between the abundance levels of these proteins and the A. euteiches infection level or severity.
KW - ABA
KW - Aphanomyces euteiches
KW - Medicago truncatula
KW - PR 10
KW - Proteasome
KW - Proteomics
UR - http://www.scopus.com/inward/record.url?scp=26844444697&partnerID=8YFLogxK
U2 - 10.1007/s11103-005-0184-z
DO - 10.1007/s11103-005-0184-z
M3 - Article
C2 - 16235107
AN - SCOPUS:26844444697
VL - 59
SP - 387
EP - 406
JO - Plant molecular biology
JF - Plant molecular biology
SN - 0167-4412
ER -