Properties of the Binary Black Hole Merger GW150914

Research output: Contribution to journalArticleResearchpeer review

Authors

  • The LIGO Scientific Collaboration
  • The Virgo Collaboration
  • Karsten Danzmann
  • Michele Heurs
  • Fumiko Kawazoe
  • Harald Lück
  • Daniel Steinmeyer
  • Henning Fedor Cornelius Vahlbruch
  • Benno Willke
  • Holger Wittel
  • Bruce Allen
  • A. Bisht
  • Timo Denker
  • Stefan Kaufer
  • Christian Krüger
  • J. D. Lough
  • A. Sawadsky

External Research Organisations

  • California Institute of Caltech (Caltech)
  • Louisiana State University
  • Universita di Salerno
  • Monte S. Angelo University Federico II
  • University of Florida
  • Universite de Savoie
  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
  • National Institute for Subatomic Physics (Nikhef)
  • LIGO Laboratory
  • Instituto Nacional de Pesquisas Espaciais
  • Istituto Nazionale di Fisica Nucleare (INFN)
  • Inter-University Centre for Astronomy and Astrophysics India
  • Tata Institute of Fundamental Research (TIFR HYD)
  • Carson College of Business
  • Syracuse University
  • University of Birmingham
  • University of Glasgow
  • Hanyang University
  • Carleton College
  • Australian National University
  • University of Melbourne
  • Tsinghua University
  • University of Western Australia
  • Observatoire Côte d'Azur
  • Rochester Institute of Technology
  • Northwestern University
  • University of Wisconsin Milwaukee
View graph of relations

Details

Original languageEnglish
Article number241102
JournalPhysical review letters
Volume116
Issue number24
Publication statusPublished - 14 Jun 2016

Abstract

On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36-4+5M and 29-4+4M; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410-180+160 Mpc, corresponding to a redshift 0.09-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62-4+4M and spin 0.67-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

ASJC Scopus subject areas

Cite this

Properties of the Binary Black Hole Merger GW150914. / The LIGO Scientific Collaboration; The Virgo Collaboration; Danzmann, Karsten et al.
In: Physical review letters, Vol. 116, No. 24, 241102, 14.06.2016.

Research output: Contribution to journalArticleResearchpeer review

The LIGO Scientific Collaboration, The Virgo Collaboration, Danzmann, K, Heurs, M, Kawazoe, F, Lück, H, Steinmeyer, D, Vahlbruch, HFC, Willke, B, Wittel, H, Allen, B, Bisht, A, Denker, T, Kaufer, S, Krüger, C, Lough, JD & Sawadsky, A 2016, 'Properties of the Binary Black Hole Merger GW150914', Physical review letters, vol. 116, no. 24, 241102. https://doi.org/10.1103/PhysRevLett.116.241102, https://doi.org/10.15488/757
The LIGO Scientific Collaboration, The Virgo Collaboration, Danzmann, K., Heurs, M., Kawazoe, F., Lück, H., Steinmeyer, D., Vahlbruch, H. F. C., Willke, B., Wittel, H., Allen, B., Bisht, A., Denker, T., Kaufer, S., Krüger, C., Lough, J. D., & Sawadsky, A. (2016). Properties of the Binary Black Hole Merger GW150914. Physical review letters, 116(24), Article 241102. https://doi.org/10.1103/PhysRevLett.116.241102, https://doi.org/10.15488/757
The LIGO Scientific Collaboration, The Virgo Collaboration, Danzmann K, Heurs M, Kawazoe F, Lück H et al. Properties of the Binary Black Hole Merger GW150914. Physical review letters. 2016 Jun 14;116(24):241102. doi: 10.1103/PhysRevLett.116.241102, 10.15488/757
The LIGO Scientific Collaboration ; The Virgo Collaboration ; Danzmann, Karsten et al. / Properties of the Binary Black Hole Merger GW150914. In: Physical review letters. 2016 ; Vol. 116, No. 24.
Download
@article{03bb85903c8a4c96ae561d2e1225c7b9,
title = "Properties of the Binary Black Hole Merger GW150914",
abstract = "On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36-4+5M and 29-4+4M; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410-180+160 Mpc, corresponding to a redshift 0.09-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62-4+4M and spin 0.67-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {M. R.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and S. Bose and Brown, {D. A.} and Y. Chen and Danilishin, {S. L.} and Karsten Danzmann and Fricke, {T. T.} and Hanke, {M. M.} and J. Hennig and Michele Heurs and Fumiko Kawazoe and Lee, {H. M.} and Harald L{\"u}ck and J. Luo and Nguyen, {T. T.} and J. Schmidt and P. Schmidt and M. Shaltev and Daniel Steinmeyer and L. Sun and Vahlbruch, {Henning Fedor Cornelius} and M. Wang and X. Wang and Y. Wang and Wei, {L. W.} and Benno Willke and Holger Wittel and L. Zhang and Y. Zhang and M. Zhou and Bruce Allen and A. Bisht and Timo Denker and Stefan Kaufer and Christian Kr{\"u}ger and Lough, {J. D.} and A. Sawadsky",
year = "2016",
month = jun,
day = "14",
doi = "10.1103/PhysRevLett.116.241102",
language = "English",
volume = "116",
journal = "Physical review letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "24",

}

Download

TY - JOUR

T1 - Properties of the Binary Black Hole Merger GW150914

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abernathy, M. R.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Bose, S.

AU - Brown, D. A.

AU - Chen, Y.

AU - Danilishin, S. L.

AU - Danzmann, Karsten

AU - Fricke, T. T.

AU - Hanke, M. M.

AU - Hennig, J.

AU - Heurs, Michele

AU - Kawazoe, Fumiko

AU - Lee, H. M.

AU - Lück, Harald

AU - Luo, J.

AU - Nguyen, T. T.

AU - Schmidt, J.

AU - Schmidt, P.

AU - Shaltev, M.

AU - Steinmeyer, Daniel

AU - Sun, L.

AU - Vahlbruch, Henning Fedor Cornelius

AU - Wang, M.

AU - Wang, X.

AU - Wang, Y.

AU - Wei, L. W.

AU - Willke, Benno

AU - Wittel, Holger

AU - Zhang, L.

AU - Zhang, Y.

AU - Zhou, M.

AU - Allen, Bruce

AU - Bisht, A.

AU - Denker, Timo

AU - Kaufer, Stefan

AU - Krüger, Christian

AU - Lough, J. D.

AU - Sawadsky, A.

PY - 2016/6/14

Y1 - 2016/6/14

N2 - On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36-4+5M and 29-4+4M; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410-180+160 Mpc, corresponding to a redshift 0.09-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62-4+4M and spin 0.67-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

AB - On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36-4+5M and 29-4+4M; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410-180+160 Mpc, corresponding to a redshift 0.09-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62-4+4M and spin 0.67-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

UR - http://www.scopus.com/inward/record.url?scp=84975451312&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.116.241102

DO - 10.1103/PhysRevLett.116.241102

M3 - Article

AN - SCOPUS:84975451312

VL - 116

JO - Physical review letters

JF - Physical review letters

SN - 0031-9007

IS - 24

M1 - 241102

ER -

By the same author(s)