Details
Original language | English |
---|---|
Title of host publication | Proceedings of the 20th International ESAFORM Conference on Material Forming, ESAFORM 2017 |
Editors | Dermot Brabazon, Inam Ul Ahad, Sumsun Naher |
ISBN (electronic) | 9780735415805 |
Publication status | Published - 16 Oct 2017 |
Event | 20th International ESAFORM Conference on Material Forming, ESAFORM 2017 - Dublin, Ireland Duration: 26 Apr 2017 → 28 Apr 2017 |
Publication series
Name | AIP Conference Proceedings |
---|---|
Volume | 1896 |
ISSN (Print) | 0094-243X |
ISSN (electronic) | 1551-7616 |
Abstract
Joining by upset bulging is a mechanical joining method where axial load is applied to a tube to form two revolving bulges, which clamp the parts to be joined and create a force and form fit. It can be used to join tubes with other structures such as sheets, plates, tubes or profiles of the same or different materials. Other processes such as welding are often limited in joining multi-material assemblies or high-strength materials. With joining by upset bulging at room temperature, the main drawback is the possible initiation of damage (cracks) in the inner buckling zone because of high local stresses and strains. In this paper, a method to avoid the formation of cracks is introduced. Before forming the bulge the tube is locally heated by an induction coil. For the construction steel (E235+N) a maximum temperature of 700 °C was used to avoid phase transformation. For the numerical study of the process the mechanical properties of the tube material were examined at different temperatures and strain rates to determine its flow curves. A parametrical FE model was developed to simulate the bulging process with local heating. Experiments with local heating were executed and metallographic studies of the bulging area were conducted. While specimens heated to 500 °C showed small cracks left, damage-free flanges could be created at 600 and 700 °C. Static testing of damage-free bulges showed improvements in tensile strength and torsion strength compared to bulges formed at room-temperature, while bending and compression behavior remained nearly unchanged. In cyclic testing the locally heated specimens underwent about 3.7 times as many cycles before failure as the specimens formed at room temperature.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Proceedings of the 20th International ESAFORM Conference on Material Forming, ESAFORM 2017. ed. / Dermot Brabazon; Inam Ul Ahad; Sumsun Naher. 2017. 110010 (AIP Conference Proceedings; Vol. 1896).
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Process Optimization of Joining by Upset Bulging with Local Heating
AU - Rusch, Michael
AU - Almohallami, Amer
AU - Sviridov, Alexander
AU - Bonk, Christian
AU - Behrens, Bernd Arno
AU - Bambach, Markus
N1 - Funding information: 17639BG was financed and supervised by the European Research Association for Sheet Metal Working (EFB). In the scope of the program to promote Industrial Collective Research it was funded by the German Federation of Industrial Research Associations (AiF) with means of the Federal Ministry of Economic Affairs and Energy (BMWi) on basis of a decision by the German Bundestag.
PY - 2017/10/16
Y1 - 2017/10/16
N2 - Joining by upset bulging is a mechanical joining method where axial load is applied to a tube to form two revolving bulges, which clamp the parts to be joined and create a force and form fit. It can be used to join tubes with other structures such as sheets, plates, tubes or profiles of the same or different materials. Other processes such as welding are often limited in joining multi-material assemblies or high-strength materials. With joining by upset bulging at room temperature, the main drawback is the possible initiation of damage (cracks) in the inner buckling zone because of high local stresses and strains. In this paper, a method to avoid the formation of cracks is introduced. Before forming the bulge the tube is locally heated by an induction coil. For the construction steel (E235+N) a maximum temperature of 700 °C was used to avoid phase transformation. For the numerical study of the process the mechanical properties of the tube material were examined at different temperatures and strain rates to determine its flow curves. A parametrical FE model was developed to simulate the bulging process with local heating. Experiments with local heating were executed and metallographic studies of the bulging area were conducted. While specimens heated to 500 °C showed small cracks left, damage-free flanges could be created at 600 and 700 °C. Static testing of damage-free bulges showed improvements in tensile strength and torsion strength compared to bulges formed at room-temperature, while bending and compression behavior remained nearly unchanged. In cyclic testing the locally heated specimens underwent about 3.7 times as many cycles before failure as the specimens formed at room temperature.
AB - Joining by upset bulging is a mechanical joining method where axial load is applied to a tube to form two revolving bulges, which clamp the parts to be joined and create a force and form fit. It can be used to join tubes with other structures such as sheets, plates, tubes or profiles of the same or different materials. Other processes such as welding are often limited in joining multi-material assemblies or high-strength materials. With joining by upset bulging at room temperature, the main drawback is the possible initiation of damage (cracks) in the inner buckling zone because of high local stresses and strains. In this paper, a method to avoid the formation of cracks is introduced. Before forming the bulge the tube is locally heated by an induction coil. For the construction steel (E235+N) a maximum temperature of 700 °C was used to avoid phase transformation. For the numerical study of the process the mechanical properties of the tube material were examined at different temperatures and strain rates to determine its flow curves. A parametrical FE model was developed to simulate the bulging process with local heating. Experiments with local heating were executed and metallographic studies of the bulging area were conducted. While specimens heated to 500 °C showed small cracks left, damage-free flanges could be created at 600 and 700 °C. Static testing of damage-free bulges showed improvements in tensile strength and torsion strength compared to bulges formed at room-temperature, while bending and compression behavior remained nearly unchanged. In cyclic testing the locally heated specimens underwent about 3.7 times as many cycles before failure as the specimens formed at room temperature.
UR - http://www.scopus.com/inward/record.url?scp=85037700228&partnerID=8YFLogxK
U2 - 10.1063/1.5008137
DO - 10.1063/1.5008137
M3 - Conference contribution
AN - SCOPUS:85037700228
T3 - AIP Conference Proceedings
BT - Proceedings of the 20th International ESAFORM Conference on Material Forming, ESAFORM 2017
A2 - Brabazon, Dermot
A2 - Ul Ahad, Inam
A2 - Naher, Sumsun
T2 - 20th International ESAFORM Conference on Material Forming, ESAFORM 2017
Y2 - 26 April 2017 through 28 April 2017
ER -