Details
Original language | English |
---|---|
Title of host publication | Material Forming, ESAFORM 2024 |
Editors | Anna Carla Araujo, Arthur Cantarel, France Chabert, Adrian Korycki, Philippe Olivier, Fabrice Schmidt |
Pages | 861-870 |
Number of pages | 10 |
Publication status | Published - 2024 |
Event | 27th International ESAFORM Conference on Material Forming, ESAFORM 2024 - Toulouse, France Duration: 24 Apr 2024 → 26 Apr 2024 |
Publication series
Name | Materials Research Proceedings |
---|---|
Volume | 41 |
ISSN (Print) | 2474-3941 |
ISSN (electronic) | 2474-395X |
Abstract
During hot forging of steel materials, the blanks are subjected to various heating processes. During these processes, scale is formed, which can lead to a mass loss of up to 3%. The additional mass required to compensate this material loss for a given forging component has a significant impact on the process emissions, as the production of the billet material has the highest impact on the overall CO₂ footprint of metal forming products [1]. Additionally, descaling operations such as upsetting are required to guarantee forging quality and process stability. At the same time, large quantities of process waste gas are emitted in the production of raw materials and components. These burnt gases have lower oxygen concentration due to the prior chemical combustion reaction. This work addresses the question, whether these burnt gases can be utilized as a forging process atmosphere. This would not only reduce material loss, but would also result in a reuse of the process waste gas. In order to retrofit existing forging infrastructure, a tooling system with a gas-tight enclosure was constructed and realized in a forming press. Defined gas combinations were fed into the enclosure to create an oxygen-reduced atmosphere. First, different gas combinations were investigated in annealing tests. The three most promising ones were then selected for the forging tests. The enclosure contained a heating, transport, forming and collecting unit. The blanks were fed in through a magazine and inductively heated to 1200 °C, formed and cooled under the defined atmosphere. In each atmosphere, 100 components were forged from the material 42CrMo4. Furthermore, it was investigated whether forming under a gas atmosphere has an influence on tool wear as scale can act as an abrasive. The investigations showed that both the surface of the starting material and the oxygen concentration of the atmosphere have a significant influence on scale formation. The amount of scale formed was reduced by up to 74% compared to an oxygen atmosphere. The adhesive layer on the upper dies was reduced with decreasing oxygen concentration. On the lower dies was an increased adhesive build-up.
Keywords
- Hot Forming, NoCarb, Retrofit
ASJC Scopus subject areas
- Materials Science(all)
- General Materials Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Material Forming, ESAFORM 2024. ed. / Anna Carla Araujo; Arthur Cantarel; France Chabert; Adrian Korycki; Philippe Olivier; Fabrice Schmidt. 2024. p. 861-870 (Materials Research Proceedings; Vol. 41).
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Prevention of scaling by means of recycled process waste gases
AU - Gerke, Niklas
AU - Peddinghaus, Julius
AU - Rosenbusch, Daniel
AU - Uhe, Johanna
AU - Brunotte, Kai
AU - Behrens, Bernd Arno
N1 - Publisher Copyright: © 2024, Association of American Publishers. All rights reserved.
PY - 2024
Y1 - 2024
N2 - During hot forging of steel materials, the blanks are subjected to various heating processes. During these processes, scale is formed, which can lead to a mass loss of up to 3%. The additional mass required to compensate this material loss for a given forging component has a significant impact on the process emissions, as the production of the billet material has the highest impact on the overall CO₂ footprint of metal forming products [1]. Additionally, descaling operations such as upsetting are required to guarantee forging quality and process stability. At the same time, large quantities of process waste gas are emitted in the production of raw materials and components. These burnt gases have lower oxygen concentration due to the prior chemical combustion reaction. This work addresses the question, whether these burnt gases can be utilized as a forging process atmosphere. This would not only reduce material loss, but would also result in a reuse of the process waste gas. In order to retrofit existing forging infrastructure, a tooling system with a gas-tight enclosure was constructed and realized in a forming press. Defined gas combinations were fed into the enclosure to create an oxygen-reduced atmosphere. First, different gas combinations were investigated in annealing tests. The three most promising ones were then selected for the forging tests. The enclosure contained a heating, transport, forming and collecting unit. The blanks were fed in through a magazine and inductively heated to 1200 °C, formed and cooled under the defined atmosphere. In each atmosphere, 100 components were forged from the material 42CrMo4. Furthermore, it was investigated whether forming under a gas atmosphere has an influence on tool wear as scale can act as an abrasive. The investigations showed that both the surface of the starting material and the oxygen concentration of the atmosphere have a significant influence on scale formation. The amount of scale formed was reduced by up to 74% compared to an oxygen atmosphere. The adhesive layer on the upper dies was reduced with decreasing oxygen concentration. On the lower dies was an increased adhesive build-up.
AB - During hot forging of steel materials, the blanks are subjected to various heating processes. During these processes, scale is formed, which can lead to a mass loss of up to 3%. The additional mass required to compensate this material loss for a given forging component has a significant impact on the process emissions, as the production of the billet material has the highest impact on the overall CO₂ footprint of metal forming products [1]. Additionally, descaling operations such as upsetting are required to guarantee forging quality and process stability. At the same time, large quantities of process waste gas are emitted in the production of raw materials and components. These burnt gases have lower oxygen concentration due to the prior chemical combustion reaction. This work addresses the question, whether these burnt gases can be utilized as a forging process atmosphere. This would not only reduce material loss, but would also result in a reuse of the process waste gas. In order to retrofit existing forging infrastructure, a tooling system with a gas-tight enclosure was constructed and realized in a forming press. Defined gas combinations were fed into the enclosure to create an oxygen-reduced atmosphere. First, different gas combinations were investigated in annealing tests. The three most promising ones were then selected for the forging tests. The enclosure contained a heating, transport, forming and collecting unit. The blanks were fed in through a magazine and inductively heated to 1200 °C, formed and cooled under the defined atmosphere. In each atmosphere, 100 components were forged from the material 42CrMo4. Furthermore, it was investigated whether forming under a gas atmosphere has an influence on tool wear as scale can act as an abrasive. The investigations showed that both the surface of the starting material and the oxygen concentration of the atmosphere have a significant influence on scale formation. The amount of scale formed was reduced by up to 74% compared to an oxygen atmosphere. The adhesive layer on the upper dies was reduced with decreasing oxygen concentration. On the lower dies was an increased adhesive build-up.
KW - Hot Forming
KW - NoCarb
KW - Retrofit
UR - http://www.scopus.com/inward/record.url?scp=85195958236&partnerID=8YFLogxK
U2 - 10.21741/9781644903131-94
DO - 10.21741/9781644903131-94
M3 - Conference contribution
AN - SCOPUS:85195958236
SN - 9781644903131
T3 - Materials Research Proceedings
SP - 861
EP - 870
BT - Material Forming, ESAFORM 2024
A2 - Araujo, Anna Carla
A2 - Cantarel, Arthur
A2 - Chabert, France
A2 - Korycki, Adrian
A2 - Olivier, Philippe
A2 - Schmidt, Fabrice
T2 - 27th International ESAFORM Conference on Material Forming, ESAFORM 2024
Y2 - 24 April 2024 through 26 April 2024
ER -