Details
Original language | English |
---|---|
Pages (from-to) | 10908-10917 |
Number of pages | 10 |
Journal | Journal of Materials Chemistry C |
Volume | 7 |
Issue number | 35 |
Early online date | 8 Aug 2019 |
Publication status | Published - 21 Sept 2019 |
Abstract
In this work, three novel porous carbon-nitride nanosheets with C7N6, C9N4 and C10N3 stoichiometries are predicted. First-principles simulations were accordingly employed to evaluate stability and explore the mechanical, electronic and optical properties. Phonon dispersions confirm the dynamical stability of all predicted nanosheets. Nonetheless, ab initio molecular dynamics results indicate that only C7N6 and C9N4 are thermally stable. C7N6, C9N4 and C10N3 nanosheets were predicted to exhibit high elastic moduli of 212, 202 and 208 N m-1 and maximum tensile strengths of 14.1, 22.4 and 15.8 N m-1, respectively. The C7N6 monolayer was confirmed to be a direct band-gap semiconductor, with a 2.25 eV gap according to the HSE06 method estimation. Interestingly, C9N4 and C10N3 monolayers show metallic character. The first absorption peaks of the optical spectra reveal that the C7N6 nanosheet can absorb visible light, whereas C9N4 and C10N3 monolayers can absorb in the infrared range of light. Moreover, the absorption coefficient and optical conductivity of the predicted nanosheets in the visible range of light are larger than those of graphene. The results provided by this study confirm the stability and highlight the very promising properties of C7N6 and C9N4 nanosheets, which may serve as promising candidates for numerous advanced technologies.
ASJC Scopus subject areas
- Chemistry(all)
- General Chemistry
- Materials Science(all)
- Materials Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Materials Chemistry C, Vol. 7, No. 35, 21.09.2019, p. 10908-10917.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Prediction of C7N6 and C9N4:
T2 - stable and strong porous carbon-nitride nanosheets with attractive electronic and optical properties
AU - Mortazavi, Bohayra
AU - Shahrokhi, Masoud
AU - Shapeev, Alexander V.
AU - Rabczuk, Timon
AU - Zhuang, Xiaoying
N1 - Funding information: B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). T. R. acknowledges the financial support from the European Research Council for the COMBAT project (Grant number 615132).
PY - 2019/9/21
Y1 - 2019/9/21
N2 - In this work, three novel porous carbon-nitride nanosheets with C7N6, C9N4 and C10N3 stoichiometries are predicted. First-principles simulations were accordingly employed to evaluate stability and explore the mechanical, electronic and optical properties. Phonon dispersions confirm the dynamical stability of all predicted nanosheets. Nonetheless, ab initio molecular dynamics results indicate that only C7N6 and C9N4 are thermally stable. C7N6, C9N4 and C10N3 nanosheets were predicted to exhibit high elastic moduli of 212, 202 and 208 N m-1 and maximum tensile strengths of 14.1, 22.4 and 15.8 N m-1, respectively. The C7N6 monolayer was confirmed to be a direct band-gap semiconductor, with a 2.25 eV gap according to the HSE06 method estimation. Interestingly, C9N4 and C10N3 monolayers show metallic character. The first absorption peaks of the optical spectra reveal that the C7N6 nanosheet can absorb visible light, whereas C9N4 and C10N3 monolayers can absorb in the infrared range of light. Moreover, the absorption coefficient and optical conductivity of the predicted nanosheets in the visible range of light are larger than those of graphene. The results provided by this study confirm the stability and highlight the very promising properties of C7N6 and C9N4 nanosheets, which may serve as promising candidates for numerous advanced technologies.
AB - In this work, three novel porous carbon-nitride nanosheets with C7N6, C9N4 and C10N3 stoichiometries are predicted. First-principles simulations were accordingly employed to evaluate stability and explore the mechanical, electronic and optical properties. Phonon dispersions confirm the dynamical stability of all predicted nanosheets. Nonetheless, ab initio molecular dynamics results indicate that only C7N6 and C9N4 are thermally stable. C7N6, C9N4 and C10N3 nanosheets were predicted to exhibit high elastic moduli of 212, 202 and 208 N m-1 and maximum tensile strengths of 14.1, 22.4 and 15.8 N m-1, respectively. The C7N6 monolayer was confirmed to be a direct band-gap semiconductor, with a 2.25 eV gap according to the HSE06 method estimation. Interestingly, C9N4 and C10N3 monolayers show metallic character. The first absorption peaks of the optical spectra reveal that the C7N6 nanosheet can absorb visible light, whereas C9N4 and C10N3 monolayers can absorb in the infrared range of light. Moreover, the absorption coefficient and optical conductivity of the predicted nanosheets in the visible range of light are larger than those of graphene. The results provided by this study confirm the stability and highlight the very promising properties of C7N6 and C9N4 nanosheets, which may serve as promising candidates for numerous advanced technologies.
UR - http://www.scopus.com/inward/record.url?scp=85072243035&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1908.03103
DO - 10.48550/arXiv.1908.03103
M3 - Article
AN - SCOPUS:85072243035
VL - 7
SP - 10908
EP - 10917
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
SN - 2050-7534
IS - 35
ER -