Details
Original language | English |
---|---|
Pages (from-to) | 363-370 |
Number of pages | 8 |
Journal | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Volume | 43 |
Issue number | B1 |
Publication status | Published - 6 Aug 2020 |
Event | 2020 24th ISPRS Congress - Technical Commission I - Nice, Virtual, France Duration: 31 Aug 2020 → 2 Sept 2020 |
Abstract
Localization is one of the first steps in navigation. Especially due to the rapid development in automated driving, a precise and reliable localization becomes essential. In this paper, we report an investigation of the usage of dynamic ground control points (GCP) in visual localization in an automotive environment. Instead of having fixed positions, dynamic GCPs move together with the camera. As a measure of quality, we employ the precision of the bundle adjustment results. In our experiments, we simulate and investigate different realistic traffic scenarios. After investigating the role of tie points, we compare an approach using dynamic GCPs to an approach with static GCPs to answer the question how a comparable precision can be reached for visual localization. We show, that in our scenario, where two dynamic GCPs move together with a camera, similar results are indeed obtained to using a number of static GCPs distributed over the whole trajectory. In another experiment, we take a closer look at sliding window bundle adjustments. Sliding windows make it possible to work with an arbitrarily large number of images and to still obtain near real-time results. We investigate this approach in combination with dynamic GCPs and vary the no. of images per window.
Keywords
- dynamic ground control points, sequential bundle adjustment, simulation, visual localization
ASJC Scopus subject areas
- Computer Science(all)
- Information Systems
- Social Sciences(all)
- Geography, Planning and Development
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 43, No. B1, 06.08.2020, p. 363-370.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Precision of visual localization using dynamic ground control points
AU - Trusheim, P.
AU - Heipke, C.
N1 - Funding Information: This work was supported by the German Research Foundation (DFG) as a part of the Research Training Group i.c.sens [GRK2159].
PY - 2020/8/6
Y1 - 2020/8/6
N2 - Localization is one of the first steps in navigation. Especially due to the rapid development in automated driving, a precise and reliable localization becomes essential. In this paper, we report an investigation of the usage of dynamic ground control points (GCP) in visual localization in an automotive environment. Instead of having fixed positions, dynamic GCPs move together with the camera. As a measure of quality, we employ the precision of the bundle adjustment results. In our experiments, we simulate and investigate different realistic traffic scenarios. After investigating the role of tie points, we compare an approach using dynamic GCPs to an approach with static GCPs to answer the question how a comparable precision can be reached for visual localization. We show, that in our scenario, where two dynamic GCPs move together with a camera, similar results are indeed obtained to using a number of static GCPs distributed over the whole trajectory. In another experiment, we take a closer look at sliding window bundle adjustments. Sliding windows make it possible to work with an arbitrarily large number of images and to still obtain near real-time results. We investigate this approach in combination with dynamic GCPs and vary the no. of images per window.
AB - Localization is one of the first steps in navigation. Especially due to the rapid development in automated driving, a precise and reliable localization becomes essential. In this paper, we report an investigation of the usage of dynamic ground control points (GCP) in visual localization in an automotive environment. Instead of having fixed positions, dynamic GCPs move together with the camera. As a measure of quality, we employ the precision of the bundle adjustment results. In our experiments, we simulate and investigate different realistic traffic scenarios. After investigating the role of tie points, we compare an approach using dynamic GCPs to an approach with static GCPs to answer the question how a comparable precision can be reached for visual localization. We show, that in our scenario, where two dynamic GCPs move together with a camera, similar results are indeed obtained to using a number of static GCPs distributed over the whole trajectory. In another experiment, we take a closer look at sliding window bundle adjustments. Sliding windows make it possible to work with an arbitrarily large number of images and to still obtain near real-time results. We investigate this approach in combination with dynamic GCPs and vary the no. of images per window.
KW - dynamic ground control points
KW - sequential bundle adjustment
KW - simulation
KW - visual localization
UR - http://www.scopus.com/inward/record.url?scp=85091146685&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLIII-B1-2020-363-2020
DO - 10.5194/isprs-archives-XLIII-B1-2020-363-2020
M3 - Conference article
AN - SCOPUS:85091146685
VL - 43
SP - 363
EP - 370
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
IS - B1
T2 - 2020 24th ISPRS Congress - Technical Commission I
Y2 - 31 August 2020 through 2 September 2020
ER -