Details
Original language | English |
---|---|
Pages (from-to) | 666-673 |
Number of pages | 8 |
Journal | Physical Chemistry Chemical Physics |
Volume | 10 |
Issue number | 5 |
Publication status | Published - 2008 |
Abstract
The rotational constants and the nitrogen nuclear quadrupole coupling constants of cis-3-aminophenol and trans-3-aminophenol are determined using Fourier-transform microwave spectroscopy. We examine several J = 2←1 and 1←0 hyperfine-resolved rotational transitions for both conformers. The transitions are fit to a rigid rotor Hamiltonian including nuclear quadrupole coupling to account for the 14N nuclear spin. For cis-3-aminophenol we obtain rotational constants of A = 3734.930 MHz, B = 1823.2095 MHz, and C = 1226.493 MHz, for trans-3-aminophenol of A = 3730.1676 MHz, B = 1828.25774 MHz, and C = 1228.1948 MHz. The dipole moments are precisely determined using Stark effect measurements for several hyperfine transitions to μa = 1.7718 D, μb = 1.517 D for cis-3-aminophenol and μa = 0.5563 D, μb = 0.5375 D for trans-3-aminophenol. Whereas the rotational constants and quadrupole coupling constants do not allow to determinate the absolute configuration of the two conformers, this assignment is straightforward based on the dipole moments. High-level ab initio calculations (B3LYP/6-31G* to MP2/aug-cc-pVTZ) are performed providing error estimates of rotational constants and dipole moments obtained for large molecules by these theoretical methods.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
- Chemistry(all)
- Physical and Theoretical Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Chemistry Chemical Physics, Vol. 10, No. 5, 2008, p. 666-673.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Precise dipole moments and quadrupole coupling constants of the cis and trans conformers of 3-aminophenol
T2 - Determination of the absolute conformation
AU - Filsinger, Frank
AU - Wohlfart, Kirstin
AU - Schnell, Melanie
AU - Grabow, Jens Uwe
AU - Küpper, Jochen
PY - 2008
Y1 - 2008
N2 - The rotational constants and the nitrogen nuclear quadrupole coupling constants of cis-3-aminophenol and trans-3-aminophenol are determined using Fourier-transform microwave spectroscopy. We examine several J = 2←1 and 1←0 hyperfine-resolved rotational transitions for both conformers. The transitions are fit to a rigid rotor Hamiltonian including nuclear quadrupole coupling to account for the 14N nuclear spin. For cis-3-aminophenol we obtain rotational constants of A = 3734.930 MHz, B = 1823.2095 MHz, and C = 1226.493 MHz, for trans-3-aminophenol of A = 3730.1676 MHz, B = 1828.25774 MHz, and C = 1228.1948 MHz. The dipole moments are precisely determined using Stark effect measurements for several hyperfine transitions to μa = 1.7718 D, μb = 1.517 D for cis-3-aminophenol and μa = 0.5563 D, μb = 0.5375 D for trans-3-aminophenol. Whereas the rotational constants and quadrupole coupling constants do not allow to determinate the absolute configuration of the two conformers, this assignment is straightforward based on the dipole moments. High-level ab initio calculations (B3LYP/6-31G* to MP2/aug-cc-pVTZ) are performed providing error estimates of rotational constants and dipole moments obtained for large molecules by these theoretical methods.
AB - The rotational constants and the nitrogen nuclear quadrupole coupling constants of cis-3-aminophenol and trans-3-aminophenol are determined using Fourier-transform microwave spectroscopy. We examine several J = 2←1 and 1←0 hyperfine-resolved rotational transitions for both conformers. The transitions are fit to a rigid rotor Hamiltonian including nuclear quadrupole coupling to account for the 14N nuclear spin. For cis-3-aminophenol we obtain rotational constants of A = 3734.930 MHz, B = 1823.2095 MHz, and C = 1226.493 MHz, for trans-3-aminophenol of A = 3730.1676 MHz, B = 1828.25774 MHz, and C = 1228.1948 MHz. The dipole moments are precisely determined using Stark effect measurements for several hyperfine transitions to μa = 1.7718 D, μb = 1.517 D for cis-3-aminophenol and μa = 0.5563 D, μb = 0.5375 D for trans-3-aminophenol. Whereas the rotational constants and quadrupole coupling constants do not allow to determinate the absolute configuration of the two conformers, this assignment is straightforward based on the dipole moments. High-level ab initio calculations (B3LYP/6-31G* to MP2/aug-cc-pVTZ) are performed providing error estimates of rotational constants and dipole moments obtained for large molecules by these theoretical methods.
UR - http://www.scopus.com/inward/record.url?scp=38649098788&partnerID=8YFLogxK
U2 - 10.1039/b711888k
DO - 10.1039/b711888k
M3 - Article
C2 - 19791450
AN - SCOPUS:38649098788
VL - 10
SP - 666
EP - 673
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
SN - 1463-9076
IS - 5
ER -