Details
Original language | English |
---|---|
Title of host publication | Mechanisms of Arsenic Toxicity and Tolerance in Plants |
Publisher | Springer Singapore |
Pages | 105-128 |
Number of pages | 24 |
ISBN (electronic) | 9789811312922 |
ISBN (print) | 9789811312915 |
Publication status | Published - 19 Nov 2018 |
Abstract
Arsenic (As) is a toxic metalloid of global concern derived from natural, geothermal, and anthropogenic sources. Arsenic has deleterious effects in all forms of life including plants. Between the two inorganic forms, the highly oxidized pentavalent arsenate (AsV) is prevalent in the aerobic environment, while the highly reduced trivalent arsenite (AsIII) is the predominant form in an anaerobic environment. The main route of AsV uptake in plants is through the phosphate transporters, while AsIII and methylated As species enter through nodulin 26-like intrinsic protein (NIP) or aquaglyceroporins. After entering into the plant cell As can severely impede plant metabolism which leads to various physiological disorder. Subsequently, growth of the plants is subdued, and it results in delaying or restraining accrual of biomass and induces loss of fertility, yield, and fruit production. Exposure to inorganic As in plants promotes oxidative stress by generating reactive oxygen species (ROS) during their conversion from AsV to AsIII. Plants have a well-organized antioxidant defense system to combat As stress. In plants, As intoxication triggers the activation of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX); synthesis of nonenzymatic antioxidants, such as ascorbate and γ-Glu-Cys-Gly-tripeptide glutathione (GSH); and accumulation of anthocyanin in the leaves. As tolerance in plants is achieved by the production of phytochelatin following As exposure which is derived from GSH. This chapter aims to provide current updates about the molecular mechanism involved in uptake of the inorganic and organic species of As, their translocation, and the As-induced stress in plants with a special emphasis on oxidative stress.
Keywords
- Antioxidative enzymes, Glutathione, Oxidative stress, Phytochelatin, Translocation, Uptake
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer Singapore, 2018. p. 105-128.
Research output: Chapter in book/report/conference proceeding › Contribution to book/anthology › Research › peer review
}
TY - CHAP
T1 - Plants response and tolerance to arsenic-induced oxidative stress
AU - Mitra, Anindita
AU - Chatterjee, Soumya
AU - Gupta, Dharmendra K.
N1 - Publisher Copyright: © Springer Nature Singapore Pte Ltd. 2018.
PY - 2018/11/19
Y1 - 2018/11/19
N2 - Arsenic (As) is a toxic metalloid of global concern derived from natural, geothermal, and anthropogenic sources. Arsenic has deleterious effects in all forms of life including plants. Between the two inorganic forms, the highly oxidized pentavalent arsenate (AsV) is prevalent in the aerobic environment, while the highly reduced trivalent arsenite (AsIII) is the predominant form in an anaerobic environment. The main route of AsV uptake in plants is through the phosphate transporters, while AsIII and methylated As species enter through nodulin 26-like intrinsic protein (NIP) or aquaglyceroporins. After entering into the plant cell As can severely impede plant metabolism which leads to various physiological disorder. Subsequently, growth of the plants is subdued, and it results in delaying or restraining accrual of biomass and induces loss of fertility, yield, and fruit production. Exposure to inorganic As in plants promotes oxidative stress by generating reactive oxygen species (ROS) during their conversion from AsV to AsIII. Plants have a well-organized antioxidant defense system to combat As stress. In plants, As intoxication triggers the activation of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX); synthesis of nonenzymatic antioxidants, such as ascorbate and γ-Glu-Cys-Gly-tripeptide glutathione (GSH); and accumulation of anthocyanin in the leaves. As tolerance in plants is achieved by the production of phytochelatin following As exposure which is derived from GSH. This chapter aims to provide current updates about the molecular mechanism involved in uptake of the inorganic and organic species of As, their translocation, and the As-induced stress in plants with a special emphasis on oxidative stress.
AB - Arsenic (As) is a toxic metalloid of global concern derived from natural, geothermal, and anthropogenic sources. Arsenic has deleterious effects in all forms of life including plants. Between the two inorganic forms, the highly oxidized pentavalent arsenate (AsV) is prevalent in the aerobic environment, while the highly reduced trivalent arsenite (AsIII) is the predominant form in an anaerobic environment. The main route of AsV uptake in plants is through the phosphate transporters, while AsIII and methylated As species enter through nodulin 26-like intrinsic protein (NIP) or aquaglyceroporins. After entering into the plant cell As can severely impede plant metabolism which leads to various physiological disorder. Subsequently, growth of the plants is subdued, and it results in delaying or restraining accrual of biomass and induces loss of fertility, yield, and fruit production. Exposure to inorganic As in plants promotes oxidative stress by generating reactive oxygen species (ROS) during their conversion from AsV to AsIII. Plants have a well-organized antioxidant defense system to combat As stress. In plants, As intoxication triggers the activation of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX); synthesis of nonenzymatic antioxidants, such as ascorbate and γ-Glu-Cys-Gly-tripeptide glutathione (GSH); and accumulation of anthocyanin in the leaves. As tolerance in plants is achieved by the production of phytochelatin following As exposure which is derived from GSH. This chapter aims to provide current updates about the molecular mechanism involved in uptake of the inorganic and organic species of As, their translocation, and the As-induced stress in plants with a special emphasis on oxidative stress.
KW - Antioxidative enzymes
KW - Glutathione
KW - Oxidative stress
KW - Phytochelatin
KW - Translocation
KW - Uptake
UR - http://www.scopus.com/inward/record.url?scp=85079732339&partnerID=8YFLogxK
U2 - 10.1007/978-981-13-1292-2_5
DO - 10.1007/978-981-13-1292-2_5
M3 - Contribution to book/anthology
AN - SCOPUS:85079732339
SN - 9789811312915
SP - 105
EP - 128
BT - Mechanisms of Arsenic Toxicity and Tolerance in Plants
PB - Springer Singapore
ER -