Details
Original language | English |
---|---|
Pages (from-to) | 1889-1898 |
Number of pages | 10 |
Journal | European Food Research and Technology |
Volume | 245 |
Issue number | 9 |
Early online date | 28 May 2019 |
Publication status | Published - Sept 2019 |
Abstract
The effect of the addition of Spirulina platensis flour and of extrusion parameters on texture, cooking yield, expressible moisture, total phenolic content (TPC), total flavonoid content (TFC), Trolox equivalent antioxidant activity (TEAC), in vitro protein digestibility (IVPD) and conformational changes of proteins using Fourier-transform infrared spectroscopy (FTIR) of lupin protein based meat analogues was studied. High moisture extrusion (HME) cooking was used to produce the meat analogues. The Spirulina concentration (15, 30 and 50%), extruder barrel temperature (145 °C, 160 °C and 170 °C), water feed (50, 55 and 60%), and screw speed (500, 800 and 1200 rpm) were varied. The Spirulina concentration and extrusion parameters significantly affected physical properties, such as texture, cooking yield and expressible moisture of the extrudates. The addition of Spirulina generally increased the TPC, TFC and TEAC values of the extrudates. Increased temperature and screw speed as well as decreased water feed slightly improved the content of TPC, TFC and TEAC, respectively. The addition of Spirulina at a level of 30% decreased the IVPD of the extrudates from 82 to 75.6%. However, increased water feed and screw speed partly counterbalanced this effect. Protein conformational analyses of the extrudates by FTIR showed that β-sheets were decreased, whereas α-helix, β-turn and antiparallel β-sheets were increased compared to the raw extrusion mixtures. On the whole, the HME process improved the values of TPC, TFC, TEAC and IVPD in the extrudates compared to the raw extrusion mixtures. The addition of Spirulina along with controlled extrusion parameters can deliver meat analogues with improved physico-chemical and nutritional properties.
Keywords
- High moisture extrusion, Lupin, Spirulina, Sustainability
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Biotechnology
- Agricultural and Biological Sciences(all)
- Food Science
- Chemistry(all)
- General Chemistry
- Biochemistry, Genetics and Molecular Biology(all)
- Biochemistry
- Engineering(all)
- Industrial and Manufacturing Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: European Food Research and Technology, Vol. 245, No. 9, 09.2019, p. 1889-1898.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Physico-chemical and nutritional properties of meat analogues based on Spirulina/lupin protein mixtures
AU - Palanisamy, Megala
AU - Töpfl, Stefan
AU - Berger, Ralf G.
AU - Hertel, Christian
N1 - Funding information: The authors would like to thank Claus Rüscher, Institut für Mineralogie, Leibniz University Hannover, for helping with the FTIR experiments and data analyses. We also appreciate the assistance of Knut Franke with statistics. This study was supported by the “Niedersächsisches Vorab” programme of the Ministry for Science and Culture of Lower Saxony (Grant # ZN 3041).
PY - 2019/9
Y1 - 2019/9
N2 - The effect of the addition of Spirulina platensis flour and of extrusion parameters on texture, cooking yield, expressible moisture, total phenolic content (TPC), total flavonoid content (TFC), Trolox equivalent antioxidant activity (TEAC), in vitro protein digestibility (IVPD) and conformational changes of proteins using Fourier-transform infrared spectroscopy (FTIR) of lupin protein based meat analogues was studied. High moisture extrusion (HME) cooking was used to produce the meat analogues. The Spirulina concentration (15, 30 and 50%), extruder barrel temperature (145 °C, 160 °C and 170 °C), water feed (50, 55 and 60%), and screw speed (500, 800 and 1200 rpm) were varied. The Spirulina concentration and extrusion parameters significantly affected physical properties, such as texture, cooking yield and expressible moisture of the extrudates. The addition of Spirulina generally increased the TPC, TFC and TEAC values of the extrudates. Increased temperature and screw speed as well as decreased water feed slightly improved the content of TPC, TFC and TEAC, respectively. The addition of Spirulina at a level of 30% decreased the IVPD of the extrudates from 82 to 75.6%. However, increased water feed and screw speed partly counterbalanced this effect. Protein conformational analyses of the extrudates by FTIR showed that β-sheets were decreased, whereas α-helix, β-turn and antiparallel β-sheets were increased compared to the raw extrusion mixtures. On the whole, the HME process improved the values of TPC, TFC, TEAC and IVPD in the extrudates compared to the raw extrusion mixtures. The addition of Spirulina along with controlled extrusion parameters can deliver meat analogues with improved physico-chemical and nutritional properties.
AB - The effect of the addition of Spirulina platensis flour and of extrusion parameters on texture, cooking yield, expressible moisture, total phenolic content (TPC), total flavonoid content (TFC), Trolox equivalent antioxidant activity (TEAC), in vitro protein digestibility (IVPD) and conformational changes of proteins using Fourier-transform infrared spectroscopy (FTIR) of lupin protein based meat analogues was studied. High moisture extrusion (HME) cooking was used to produce the meat analogues. The Spirulina concentration (15, 30 and 50%), extruder barrel temperature (145 °C, 160 °C and 170 °C), water feed (50, 55 and 60%), and screw speed (500, 800 and 1200 rpm) were varied. The Spirulina concentration and extrusion parameters significantly affected physical properties, such as texture, cooking yield and expressible moisture of the extrudates. The addition of Spirulina generally increased the TPC, TFC and TEAC values of the extrudates. Increased temperature and screw speed as well as decreased water feed slightly improved the content of TPC, TFC and TEAC, respectively. The addition of Spirulina at a level of 30% decreased the IVPD of the extrudates from 82 to 75.6%. However, increased water feed and screw speed partly counterbalanced this effect. Protein conformational analyses of the extrudates by FTIR showed that β-sheets were decreased, whereas α-helix, β-turn and antiparallel β-sheets were increased compared to the raw extrusion mixtures. On the whole, the HME process improved the values of TPC, TFC, TEAC and IVPD in the extrudates compared to the raw extrusion mixtures. The addition of Spirulina along with controlled extrusion parameters can deliver meat analogues with improved physico-chemical and nutritional properties.
KW - High moisture extrusion
KW - Lupin
KW - Spirulina
KW - Sustainability
UR - http://www.scopus.com/inward/record.url?scp=85066615578&partnerID=8YFLogxK
U2 - 10.1007/s00217-019-03298-w
DO - 10.1007/s00217-019-03298-w
M3 - Article
AN - SCOPUS:85066615578
VL - 245
SP - 1889
EP - 1898
JO - European Food Research and Technology
JF - European Food Research and Technology
SN - 1438-2377
IS - 9
ER -