Details
Original language | English |
---|---|
Pages (from-to) | 61-72 |
Number of pages | 12 |
Journal | Special Paper of the Geological Society of America |
Volume | 350 |
Publication status | Published - 1 Jan 2000 |
Abstract
Isobaric crystallisation paths obtained from phase equilibrium experiments show that, whereas in rhyolitic compositions melt fraction trends are distinctly eutectic, dacitic and more mafic compositions have their crystallinities linearly correlated with temperatures. As a consequence, the viscosities of the latter continuously increase on cooling, whereas for the former they remain constant or even decrease during 80% of the crystallisation interval, which opens new perspectives for the fluid dynamical modelling of felsic magma chambers. Given the typical dyke widths observed for basaltic magmas, results of analogue modelling predict that injection of mafic magmas into crystallising intermediate to silicic plutons under pre-eruption conditions cannot yield homogeneous composition. Homogenisation can occur, however, if injection takes place in the early stages of magmatic evolution (i.e. at near liquidus conditions) but only in magmas of dacitic or more mafic composition. More generally, the potential for efficient mixing between silicic and mafic magmas sharing large interfaces at upper crustal levels is greater for dry basalts than for wet ones. At the other extreme, small mafic enclaves found in many granitoids behave essentially as rigid objects during a substantial part of the crystallisation interval of the host magmas, which implies that finite strain analyses carried out on such markers can give only a minimum estimate of the total amount of strain experienced by the host pluton. Mafic enclaves carried by granitic magmas behave as passive markers only at near solidus conditions, typically when the host granitic magma shows near-solid behaviour. Thus they cannot be used as fossil indicators of direction of magmatic flow.
Keywords
- Andesite, Basalt, Dacite, Granite, Rhyolite
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Special Paper of the Geological Society of America, Vol. 350, 01.01.2000, p. 61-72.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Phase equilibrium constraints on the viscosity of silicic magmas II
T2 - Implications for mafic-silicic mixing processes
AU - Scaillet, Bruno
AU - Whittington, Alan
AU - Martel, Caroline
AU - Pichavant, Michel
AU - Holtz, François
N1 - Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2000/1/1
Y1 - 2000/1/1
N2 - Isobaric crystallisation paths obtained from phase equilibrium experiments show that, whereas in rhyolitic compositions melt fraction trends are distinctly eutectic, dacitic and more mafic compositions have their crystallinities linearly correlated with temperatures. As a consequence, the viscosities of the latter continuously increase on cooling, whereas for the former they remain constant or even decrease during 80% of the crystallisation interval, which opens new perspectives for the fluid dynamical modelling of felsic magma chambers. Given the typical dyke widths observed for basaltic magmas, results of analogue modelling predict that injection of mafic magmas into crystallising intermediate to silicic plutons under pre-eruption conditions cannot yield homogeneous composition. Homogenisation can occur, however, if injection takes place in the early stages of magmatic evolution (i.e. at near liquidus conditions) but only in magmas of dacitic or more mafic composition. More generally, the potential for efficient mixing between silicic and mafic magmas sharing large interfaces at upper crustal levels is greater for dry basalts than for wet ones. At the other extreme, small mafic enclaves found in many granitoids behave essentially as rigid objects during a substantial part of the crystallisation interval of the host magmas, which implies that finite strain analyses carried out on such markers can give only a minimum estimate of the total amount of strain experienced by the host pluton. Mafic enclaves carried by granitic magmas behave as passive markers only at near solidus conditions, typically when the host granitic magma shows near-solid behaviour. Thus they cannot be used as fossil indicators of direction of magmatic flow.
AB - Isobaric crystallisation paths obtained from phase equilibrium experiments show that, whereas in rhyolitic compositions melt fraction trends are distinctly eutectic, dacitic and more mafic compositions have their crystallinities linearly correlated with temperatures. As a consequence, the viscosities of the latter continuously increase on cooling, whereas for the former they remain constant or even decrease during 80% of the crystallisation interval, which opens new perspectives for the fluid dynamical modelling of felsic magma chambers. Given the typical dyke widths observed for basaltic magmas, results of analogue modelling predict that injection of mafic magmas into crystallising intermediate to silicic plutons under pre-eruption conditions cannot yield homogeneous composition. Homogenisation can occur, however, if injection takes place in the early stages of magmatic evolution (i.e. at near liquidus conditions) but only in magmas of dacitic or more mafic composition. More generally, the potential for efficient mixing between silicic and mafic magmas sharing large interfaces at upper crustal levels is greater for dry basalts than for wet ones. At the other extreme, small mafic enclaves found in many granitoids behave essentially as rigid objects during a substantial part of the crystallisation interval of the host magmas, which implies that finite strain analyses carried out on such markers can give only a minimum estimate of the total amount of strain experienced by the host pluton. Mafic enclaves carried by granitic magmas behave as passive markers only at near solidus conditions, typically when the host granitic magma shows near-solid behaviour. Thus they cannot be used as fossil indicators of direction of magmatic flow.
KW - Andesite
KW - Basalt
KW - Dacite
KW - Granite
KW - Rhyolite
UR - http://www.scopus.com/inward/record.url?scp=84858297924&partnerID=8YFLogxK
U2 - 10.1130/0-8137-2350-7.61
DO - 10.1130/0-8137-2350-7.61
M3 - Article
AN - SCOPUS:84858297924
VL - 350
SP - 61
EP - 72
JO - Special Paper of the Geological Society of America
JF - Special Paper of the Geological Society of America
SN - 0072-1077
ER -