Loading [MathJax]/extensions/tex2jax.js

Parametrised enumeration

Research output: ThesisHabilitation treatise

Details

Original languageEnglish
QualificationDoctor habilitatus
Awarding Institution
Supervised by
  • Tantau, Till, Supervisor, External person
Date of Award11 Feb 2020
Place of PublicationHannover
Publication statusPublished - 2020

Abstract

In this thesis, we develop a framework of parametrised enumeration complexity. At first, we provide the reader with preliminary notions such as machine models and complexity classes besides proving them to be well-chosen. Then, we study the interplay and the landscape of these classes and present connections to classical enumeration classes. Afterwards, we translate the fundamental methods of kernelisation and self-reducibility into equivalent techniques in the setting of parametrised enumeration. Subsequently, we illustrate the introduced classes by investigating the parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT. After this, we extend the definitions of parametrised enumeration algorithms by allowing orders on the solution space. In this context, we study the relations ``order by size'' and ``lexicographic order'' for graph modification problems and observe a trade-off between enumeration delay and space requirements of enumeration algorithms. These results then yield an enumeration technique for generalised modification problems that is illustrated by applying this method to the problems closest string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we consider the enumeration of satisfying teams of formulas of poor man's propositional dependence logic. There, we present an enumeration algorithm with FPT delay and exponential space which is one of the first enumeration complexity results of a problem in a team logic. Finally, we show how this algorithm can be modified such that only polynomial space is required, however, by increasing the delay to incremental FPT time.

Cite this

Parametrised enumeration. / Meier, Arne.
Hannover, 2020. 111 p.

Research output: ThesisHabilitation treatise

Meier, A 2020, 'Parametrised enumeration', Doctor habilitatus, Leibniz University Hannover, Hannover. https://doi.org/10.15488/9427
Meier, A. (2020). Parametrised enumeration. [Habilitation treatise, Leibniz University Hannover]. https://doi.org/10.15488/9427
Meier A. Parametrised enumeration. Hannover, 2020. 111 p. doi: 10.15488/9427
Meier, Arne. / Parametrised enumeration. Hannover, 2020. 111 p.
Download
@phdthesis{f57733981d1f467d8668cfaf23d0400d,
title = "Parametrised enumeration",
abstract = "In this thesis, we develop a framework of parametrised enumeration complexity. At first, we provide the reader with preliminary notions such as machine models and complexity classes besides proving them to be well-chosen. Then, we study the interplay and the landscape of these classes and present connections to classical enumeration classes. Afterwards, we translate the fundamental methods of kernelisation and self-reducibility into equivalent techniques in the setting of parametrised enumeration. Subsequently, we illustrate the introduced classes by investigating the parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT. After this, we extend the definitions of parametrised enumeration algorithms by allowing orders on the solution space. In this context, we study the relations ``order by size'' and ``lexicographic order'' for graph modification problems and observe a trade-off between enumeration delay and space requirements of enumeration algorithms. These results then yield an enumeration technique for generalised modification problems that is illustrated by applying this method to the problems closest string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we consider the enumeration of satisfying teams of formulas of poor man's propositional dependence logic. There, we present an enumeration algorithm with FPT delay and exponential space which is one of the first enumeration complexity results of a problem in a team logic. Finally, we show how this algorithm can be modified such that only polynomial space is required, however, by increasing the delay to incremental FPT time.",
author = "Arne Meier",
year = "2020",
doi = "10.15488/9427",
language = "English",
type = "Habilitation treatise",
school = "Leibniz University Hannover",

}

Download

TY - THES

T1 - Parametrised enumeration

AU - Meier, Arne

PY - 2020

Y1 - 2020

N2 - In this thesis, we develop a framework of parametrised enumeration complexity. At first, we provide the reader with preliminary notions such as machine models and complexity classes besides proving them to be well-chosen. Then, we study the interplay and the landscape of these classes and present connections to classical enumeration classes. Afterwards, we translate the fundamental methods of kernelisation and self-reducibility into equivalent techniques in the setting of parametrised enumeration. Subsequently, we illustrate the introduced classes by investigating the parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT. After this, we extend the definitions of parametrised enumeration algorithms by allowing orders on the solution space. In this context, we study the relations ``order by size'' and ``lexicographic order'' for graph modification problems and observe a trade-off between enumeration delay and space requirements of enumeration algorithms. These results then yield an enumeration technique for generalised modification problems that is illustrated by applying this method to the problems closest string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we consider the enumeration of satisfying teams of formulas of poor man's propositional dependence logic. There, we present an enumeration algorithm with FPT delay and exponential space which is one of the first enumeration complexity results of a problem in a team logic. Finally, we show how this algorithm can be modified such that only polynomial space is required, however, by increasing the delay to incremental FPT time.

AB - In this thesis, we develop a framework of parametrised enumeration complexity. At first, we provide the reader with preliminary notions such as machine models and complexity classes besides proving them to be well-chosen. Then, we study the interplay and the landscape of these classes and present connections to classical enumeration classes. Afterwards, we translate the fundamental methods of kernelisation and self-reducibility into equivalent techniques in the setting of parametrised enumeration. Subsequently, we illustrate the introduced classes by investigating the parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT. After this, we extend the definitions of parametrised enumeration algorithms by allowing orders on the solution space. In this context, we study the relations ``order by size'' and ``lexicographic order'' for graph modification problems and observe a trade-off between enumeration delay and space requirements of enumeration algorithms. These results then yield an enumeration technique for generalised modification problems that is illustrated by applying this method to the problems closest string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we consider the enumeration of satisfying teams of formulas of poor man's propositional dependence logic. There, we present an enumeration algorithm with FPT delay and exponential space which is one of the first enumeration complexity results of a problem in a team logic. Finally, we show how this algorithm can be modified such that only polynomial space is required, however, by increasing the delay to incremental FPT time.

U2 - 10.15488/9427

DO - 10.15488/9427

M3 - Habilitation treatise

CY - Hannover

ER -

By the same author(s)