Details
Original language | English |
---|---|
Article number | 180406 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 92 |
Issue number | 18 |
Publication status | Published - 9 Nov 2015 |
Abstract
The absence of energy dissipation leads to an intriguing out-of-equilibrium dynamics for ultracold polar gases in optical lattices, characterized by the formation of dynamically bound on-site and inter-site clusters of two or more particles, and by an effective blockade repulsion. These effects combined with the controlled preparation of initial states available in cold-gas experiments can be employed to create interesting out-of-equilibrium states. These include quasiequilibrated effectively repulsive 1D gases for attractive dipolar interactions and dynamically bound crystals. Furthermore, nonequilibrium polar lattice gases can offer a promising scenario for the study of quasi-many-body localization in the absence of quenched disorder. This fascinating out-of-equilibrium dynamics for ultracold polar gases in optical lattices may be accessible in on-going experiments.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Condensed Matter Physics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Review B - Condensed Matter and Materials Physics, Vol. 92, No. 18, 180406, 09.11.2015.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Out-of-equilibrium states and quasi-many-body localization in polar lattice gases
AU - Barbiero, L.
AU - Menotti, C.
AU - Recati, A.
AU - Santos, Luis
PY - 2015/11/9
Y1 - 2015/11/9
N2 - The absence of energy dissipation leads to an intriguing out-of-equilibrium dynamics for ultracold polar gases in optical lattices, characterized by the formation of dynamically bound on-site and inter-site clusters of two or more particles, and by an effective blockade repulsion. These effects combined with the controlled preparation of initial states available in cold-gas experiments can be employed to create interesting out-of-equilibrium states. These include quasiequilibrated effectively repulsive 1D gases for attractive dipolar interactions and dynamically bound crystals. Furthermore, nonequilibrium polar lattice gases can offer a promising scenario for the study of quasi-many-body localization in the absence of quenched disorder. This fascinating out-of-equilibrium dynamics for ultracold polar gases in optical lattices may be accessible in on-going experiments.
AB - The absence of energy dissipation leads to an intriguing out-of-equilibrium dynamics for ultracold polar gases in optical lattices, characterized by the formation of dynamically bound on-site and inter-site clusters of two or more particles, and by an effective blockade repulsion. These effects combined with the controlled preparation of initial states available in cold-gas experiments can be employed to create interesting out-of-equilibrium states. These include quasiequilibrated effectively repulsive 1D gases for attractive dipolar interactions and dynamically bound crystals. Furthermore, nonequilibrium polar lattice gases can offer a promising scenario for the study of quasi-many-body localization in the absence of quenched disorder. This fascinating out-of-equilibrium dynamics for ultracold polar gases in optical lattices may be accessible in on-going experiments.
UR - http://www.scopus.com/inward/record.url?scp=84948407520&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.92.180406
DO - 10.1103/PhysRevB.92.180406
M3 - Article
AN - SCOPUS:84948407520
VL - 92
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 1098-0121
IS - 18
M1 - 180406
ER -