Details
Original language | English |
---|---|
Article number | e0118164 |
Journal | PLOS ONE |
Volume | 10 |
Issue number | 2 |
Publication status | Published - 23 Feb 2015 |
Externally published | Yes |
Abstract
Two-photon polymerization (2PP) is applied for the fabrication of 3-D Zr-Si scaffolds for bone tissue engineering. Zr-Si scaffolds with 150, 200, and 250 μm pore sizes are seeded with human bone marrow stem cells (hBMSCs) and human adipose tissue derived stem cells (hASCs) and cultured in osteoinductive and control media for three weeks. Osteogenic differentiation of hASCs and hBMSCs and formation of bone matrix is comparatively analyzed via alkaline phosphatase activity (ALP), calcium quantification, osteocalcin staining and scanning electron microscopy (SEM). It is observed that the 150 μm pore size Zr-Si scaffolds support the strongest matrix mineralization, as confirmed by calcium deposition. Analysis of ALP activity, osteocalcin staining and SEM observations of matrix mineralization reveal that mesenchymal stem cells cultured on 3-D scaffolds without osteogenic stimulation spontaneously differentiate towards osteogenic lineage. Nanoindentation measurements show that aging of the 2PP-produced Zr-Si scaffolds in aqueous or alcohol media results in an increase in the scaffold Young's modulus and hardness. Moreover, accelerated formation of bone matrix by hASCs is noted, when cultured on the scaffolds with lower Young's moduli and hardness values (non aged scaffolds) compared to the cells cultured on scaffolds with higher Young's modulus and hardness values (aged scaffolds). Presented results support the potential application of Zr-Si scaffolds for autologous bone tissue engineering.
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- General Biochemistry,Genetics and Molecular Biology
- Agricultural and Biological Sciences(all)
- General Agricultural and Biological Sciences
- General
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: PLOS ONE, Vol. 10, No. 2, e0118164, 23.02.2015.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Osteogenic Differentiation of Human Mesenchymal Stem Cells in 3-D Zr-Si Organic-Inorganic Scaffolds Produced by Two-Photon Polymerization Technique
AU - Koroleva, Anastasia
AU - Deiwick, Andrea
AU - Nguyen, Alexander
AU - Schlie-Wolter, Sabrina
AU - Narayan, Roger
AU - Timashev, Peter
AU - Popov, Vladimir
AU - Bagratashvili, Viktor
AU - Chichkov, Boris
N1 - Funding information: The authors would like to acknowledge Dr. Michael Pflaum (MHH) for the generous gift of hASCs. We thank Dr. Olga Kufelt (LZH) for helpful comments. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), the Cluster of Excellence REBIRTH and Low Saxony project Biofabrication for Nife. Scaffolds mechanical tests and aging experiments have been supported by the grant ? 14-25-00055 of Russian science foundation. Grant of the Government of the Russian Federation for the Support of Scientific Investigations under the Supervision of Leading Scientists Contract No. 14.B25.31.0019 is also acknowledged.
PY - 2015/2/23
Y1 - 2015/2/23
N2 - Two-photon polymerization (2PP) is applied for the fabrication of 3-D Zr-Si scaffolds for bone tissue engineering. Zr-Si scaffolds with 150, 200, and 250 μm pore sizes are seeded with human bone marrow stem cells (hBMSCs) and human adipose tissue derived stem cells (hASCs) and cultured in osteoinductive and control media for three weeks. Osteogenic differentiation of hASCs and hBMSCs and formation of bone matrix is comparatively analyzed via alkaline phosphatase activity (ALP), calcium quantification, osteocalcin staining and scanning electron microscopy (SEM). It is observed that the 150 μm pore size Zr-Si scaffolds support the strongest matrix mineralization, as confirmed by calcium deposition. Analysis of ALP activity, osteocalcin staining and SEM observations of matrix mineralization reveal that mesenchymal stem cells cultured on 3-D scaffolds without osteogenic stimulation spontaneously differentiate towards osteogenic lineage. Nanoindentation measurements show that aging of the 2PP-produced Zr-Si scaffolds in aqueous or alcohol media results in an increase in the scaffold Young's modulus and hardness. Moreover, accelerated formation of bone matrix by hASCs is noted, when cultured on the scaffolds with lower Young's moduli and hardness values (non aged scaffolds) compared to the cells cultured on scaffolds with higher Young's modulus and hardness values (aged scaffolds). Presented results support the potential application of Zr-Si scaffolds for autologous bone tissue engineering.
AB - Two-photon polymerization (2PP) is applied for the fabrication of 3-D Zr-Si scaffolds for bone tissue engineering. Zr-Si scaffolds with 150, 200, and 250 μm pore sizes are seeded with human bone marrow stem cells (hBMSCs) and human adipose tissue derived stem cells (hASCs) and cultured in osteoinductive and control media for three weeks. Osteogenic differentiation of hASCs and hBMSCs and formation of bone matrix is comparatively analyzed via alkaline phosphatase activity (ALP), calcium quantification, osteocalcin staining and scanning electron microscopy (SEM). It is observed that the 150 μm pore size Zr-Si scaffolds support the strongest matrix mineralization, as confirmed by calcium deposition. Analysis of ALP activity, osteocalcin staining and SEM observations of matrix mineralization reveal that mesenchymal stem cells cultured on 3-D scaffolds without osteogenic stimulation spontaneously differentiate towards osteogenic lineage. Nanoindentation measurements show that aging of the 2PP-produced Zr-Si scaffolds in aqueous or alcohol media results in an increase in the scaffold Young's modulus and hardness. Moreover, accelerated formation of bone matrix by hASCs is noted, when cultured on the scaffolds with lower Young's moduli and hardness values (non aged scaffolds) compared to the cells cultured on scaffolds with higher Young's modulus and hardness values (aged scaffolds). Presented results support the potential application of Zr-Si scaffolds for autologous bone tissue engineering.
UR - http://www.scopus.com/inward/record.url?scp=84923270119&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0118164
DO - 10.1371/journal.pone.0118164
M3 - Article
C2 - 25706270
AN - SCOPUS:84923270119
VL - 10
JO - PLOS ONE
JF - PLOS ONE
SN - 1932-6203
IS - 2
M1 - e0118164
ER -