Origins of material failure in siloxane elastomers from first principles

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Elizabeth M. Lupton
  • Frank Achenbach
  • Johann Weis
  • Christoph Bräuchle
  • Irmgard Frank

Research Organisations

External Research Organisations

  • Ludwig-Maximilians-Universität München (LMU)
  • University of Utah
  • Wacker Chemie AG
View graph of relations

Details

Original languageEnglish
Pages (from-to)119-123
Number of pages5
JournalChemPhysChem
Volume10
Issue number1
Early online date7 Jan 2009
Publication statusPublished - 12 Jan 2009

Abstract

Material failure under tensile stress limits the range of technical applications of siloxane materials. By using first-principles simulations, the authors show that a single siloxane chain can tolerate high mechanical load, but once it is broken, the resulting ions easily attack neighboring chains, thus destabilizing the network (see figure; Si: grey, O: red, C: black, H: gold).

Keywords

    Density functional calculations, Materials science, Mechanical properties, Molecular dynamics, Polymers

ASJC Scopus subject areas

Cite this

Origins of material failure in siloxane elastomers from first principles. / Lupton, Elizabeth M.; Achenbach, Frank; Weis, Johann et al.
In: ChemPhysChem, Vol. 10, No. 1, 12.01.2009, p. 119-123.

Research output: Contribution to journalArticleResearchpeer review

Lupton, EM, Achenbach, F, Weis, J, Bräuchle, C & Frank, I 2009, 'Origins of material failure in siloxane elastomers from first principles', ChemPhysChem, vol. 10, no. 1, pp. 119-123. https://doi.org/10.1002/cphc.200800094
Lupton, E. M., Achenbach, F., Weis, J., Bräuchle, C., & Frank, I. (2009). Origins of material failure in siloxane elastomers from first principles. ChemPhysChem, 10(1), 119-123. https://doi.org/10.1002/cphc.200800094
Lupton EM, Achenbach F, Weis J, Bräuchle C, Frank I. Origins of material failure in siloxane elastomers from first principles. ChemPhysChem. 2009 Jan 12;10(1):119-123. Epub 2009 Jan 7. doi: 10.1002/cphc.200800094
Lupton, Elizabeth M. ; Achenbach, Frank ; Weis, Johann et al. / Origins of material failure in siloxane elastomers from first principles. In: ChemPhysChem. 2009 ; Vol. 10, No. 1. pp. 119-123.
Download
@article{501af3369b7445c4a018a8e7e9c5f0f9,
title = "Origins of material failure in siloxane elastomers from first principles",
abstract = "Material failure under tensile stress limits the range of technical applications of siloxane materials. By using first-principles simulations, the authors show that a single siloxane chain can tolerate high mechanical load, but once it is broken, the resulting ions easily attack neighboring chains, thus destabilizing the network (see figure; Si: grey, O: red, C: black, H: gold).",
keywords = "Density functional calculations, Materials science, Mechanical properties, Molecular dynamics, Polymers",
author = "Lupton, {Elizabeth M.} and Frank Achenbach and Johann Weis and Christoph Br{\"a}uchle and Irmgard Frank",
year = "2009",
month = jan,
day = "12",
doi = "10.1002/cphc.200800094",
language = "English",
volume = "10",
pages = "119--123",
journal = "ChemPhysChem",
issn = "1439-4235",
publisher = "Wiley-VCH Verlag",
number = "1",

}

Download

TY - JOUR

T1 - Origins of material failure in siloxane elastomers from first principles

AU - Lupton, Elizabeth M.

AU - Achenbach, Frank

AU - Weis, Johann

AU - Bräuchle, Christoph

AU - Frank, Irmgard

PY - 2009/1/12

Y1 - 2009/1/12

N2 - Material failure under tensile stress limits the range of technical applications of siloxane materials. By using first-principles simulations, the authors show that a single siloxane chain can tolerate high mechanical load, but once it is broken, the resulting ions easily attack neighboring chains, thus destabilizing the network (see figure; Si: grey, O: red, C: black, H: gold).

AB - Material failure under tensile stress limits the range of technical applications of siloxane materials. By using first-principles simulations, the authors show that a single siloxane chain can tolerate high mechanical load, but once it is broken, the resulting ions easily attack neighboring chains, thus destabilizing the network (see figure; Si: grey, O: red, C: black, H: gold).

KW - Density functional calculations

KW - Materials science

KW - Mechanical properties

KW - Molecular dynamics

KW - Polymers

UR - http://www.scopus.com/inward/record.url?scp=58149485669&partnerID=8YFLogxK

U2 - 10.1002/cphc.200800094

DO - 10.1002/cphc.200800094

M3 - Article

C2 - 19016295

AN - SCOPUS:58149485669

VL - 10

SP - 119

EP - 123

JO - ChemPhysChem

JF - ChemPhysChem

SN - 1439-4235

IS - 1

ER -