Details
Original language | English |
---|---|
Pages (from-to) | 49-54 |
Number of pages | 6 |
Journal | Moscow Mathematical Journal |
Volume | 12 |
Issue number | 1 |
Publication status | Published - 2012 |
Abstract
Keywords
- Group actions, Invertible polynomials, Orbifold Euler characteristic
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Moscow Mathematical Journal, Vol. 12, No. 1, 2012, p. 49-54.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Orbifold Euler characteristics for dual invertible polynomials
AU - Ebeling, Wolfgang
AU - Gusein-Zade, Sabir M.
N1 - Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - To construct mirror symmetric Landau-Ginzburg models, P.Berglund, T.Hübsch and M.Henningson considered a pair $(f,G)$ consisting of an invertible polynomial $f$ and an abelian group $G$ of its symmetries together with a dual pair $(\widetilde{f}, \widetilde{G})$. Here we study the reduced orbifold Euler characteristics of the Milnor fibres of $f$ and $\widetilde f$ with the actions of the groups $G$ and $\widetilde G$ respectively and show that they coincide up to a sign.
AB - To construct mirror symmetric Landau-Ginzburg models, P.Berglund, T.Hübsch and M.Henningson considered a pair $(f,G)$ consisting of an invertible polynomial $f$ and an abelian group $G$ of its symmetries together with a dual pair $(\widetilde{f}, \widetilde{G})$. Here we study the reduced orbifold Euler characteristics of the Milnor fibres of $f$ and $\widetilde f$ with the actions of the groups $G$ and $\widetilde G$ respectively and show that they coincide up to a sign.
KW - Group actions
KW - Invertible polynomials
KW - Orbifold Euler characteristic
UR - http://www.scopus.com/inward/record.url?scp=84855863151&partnerID=8YFLogxK
U2 - 10.17323/1609-4514-2012-12-1-49-54
DO - 10.17323/1609-4514-2012-12-1-49-54
M3 - Article
AN - SCOPUS:84855863151
VL - 12
SP - 49
EP - 54
JO - Moscow Mathematical Journal
JF - Moscow Mathematical Journal
SN - 1609-3321
IS - 1
ER -