Details
Original language | English |
---|---|
Pages (from-to) | 15-22 |
Number of pages | 8 |
Journal | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Volume | 42 |
Issue number | 3/W1 |
Publication status | Published - 25 Jul 2017 |
Event | 2017 International Symposium on Planetary Remote Sensing and Mapping, PRSM 2017 - Hong Kong, Hong Kong Duration: 13 Aug 2017 → 16 Aug 2017 |
Abstract
For a systematic mapping of the Martian surface, the Mars Express orbiter is equipped with a multi-line scanner: Since the beginning of 2004 the High Resolution Stereo Camera (HRSC) regularly acquires long image strips. By now more than 4, 000 strips covering nearly the whole planet are available. Due to the nine channels, each with different viewing direction, and partly with different optical filters, each strip provides 3D and color information and allows the generation of digital terrain models (DTMs) and orthophotos. To map larger regions, neighboring HRSC strips can be combined to build DTM and orthophoto mosaics. The global mapping scheme Mars Chart 30 is used to define the extent of these mosaics. In order to avoid unreasonably large data volumes, each MC-30 tile is divided into two parts, combining about 90 strips each. To ensure a seamless fit of these strips, several radiometric and geometric corrections are applied in the photogrammetric process. A simultaneous bundle adjustment of all strips as a block is carried out to estimate their precise exterior orientation. Because size, position, resolution and image quality of the strips in these blocks are heterogeneous, also the quality and distribution of the tie points vary. In absence of ground control points, heights of a global terrain model are used as reference information, and for this task a regular distribution of these tie points is preferable. Besides, their total number should be limited because of computational reasons. In this paper, we present an algorithm, which optimizes the distribution of tie points under these constraints. A large number of tie points used as input is reduced without affecting the geometric stability of the block by preserving connections between strips. This stability is achieved by using a regular grid in object space and discarding, for each grid cell, points which are redundant for the block adjustment. The set of tie points, filtered by the algorithm, shows a more homogenous distribution and is considerably smaller. Used for the block adjustment, it yields results of equal quality, with significantly shorter computation time. In this work, we present experiments with MC-30 half-tile blocks, which confirm our idea for reaching a stable and faster bundle adjustment. The described method is used for the systematic processing of HRSC data.
Keywords
- Bundle adjustment, HRSC, Mars, Planetary mapping, Tie points
ASJC Scopus subject areas
- Computer Science(all)
- Information Systems
- Social Sciences(all)
- Geography, Planning and Development
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 42, No. 3/W1, 25.07.2017, p. 15-22.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - OPTIMIZING THE DISTRIBUTION OF TIE POINTS FOR THE BUNDLE ADJUSTMENT OF HRSC IMAGE MOSAICS
AU - Bostelmann, J.
AU - Breitkopf, U.
AU - Heipke, C.
N1 - Funding Information: We thank the HRSC Experiment Teams at DLR Berlin and Freie Universität Berlin as well as the Mars Express Project Teams at ESTEC and ESOC for their successful planning and acquisition of data as well as for making the processed data available to the HRSC Team. This work is funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) within the project management of the German Aerospace Center (DLR) under grant no. 50 QM 1601 . This support is gratefully acknowledged. Publisher Copyright: © Authors 2017. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/7/25
Y1 - 2017/7/25
N2 - For a systematic mapping of the Martian surface, the Mars Express orbiter is equipped with a multi-line scanner: Since the beginning of 2004 the High Resolution Stereo Camera (HRSC) regularly acquires long image strips. By now more than 4, 000 strips covering nearly the whole planet are available. Due to the nine channels, each with different viewing direction, and partly with different optical filters, each strip provides 3D and color information and allows the generation of digital terrain models (DTMs) and orthophotos. To map larger regions, neighboring HRSC strips can be combined to build DTM and orthophoto mosaics. The global mapping scheme Mars Chart 30 is used to define the extent of these mosaics. In order to avoid unreasonably large data volumes, each MC-30 tile is divided into two parts, combining about 90 strips each. To ensure a seamless fit of these strips, several radiometric and geometric corrections are applied in the photogrammetric process. A simultaneous bundle adjustment of all strips as a block is carried out to estimate their precise exterior orientation. Because size, position, resolution and image quality of the strips in these blocks are heterogeneous, also the quality and distribution of the tie points vary. In absence of ground control points, heights of a global terrain model are used as reference information, and for this task a regular distribution of these tie points is preferable. Besides, their total number should be limited because of computational reasons. In this paper, we present an algorithm, which optimizes the distribution of tie points under these constraints. A large number of tie points used as input is reduced without affecting the geometric stability of the block by preserving connections between strips. This stability is achieved by using a regular grid in object space and discarding, for each grid cell, points which are redundant for the block adjustment. The set of tie points, filtered by the algorithm, shows a more homogenous distribution and is considerably smaller. Used for the block adjustment, it yields results of equal quality, with significantly shorter computation time. In this work, we present experiments with MC-30 half-tile blocks, which confirm our idea for reaching a stable and faster bundle adjustment. The described method is used for the systematic processing of HRSC data.
AB - For a systematic mapping of the Martian surface, the Mars Express orbiter is equipped with a multi-line scanner: Since the beginning of 2004 the High Resolution Stereo Camera (HRSC) regularly acquires long image strips. By now more than 4, 000 strips covering nearly the whole planet are available. Due to the nine channels, each with different viewing direction, and partly with different optical filters, each strip provides 3D and color information and allows the generation of digital terrain models (DTMs) and orthophotos. To map larger regions, neighboring HRSC strips can be combined to build DTM and orthophoto mosaics. The global mapping scheme Mars Chart 30 is used to define the extent of these mosaics. In order to avoid unreasonably large data volumes, each MC-30 tile is divided into two parts, combining about 90 strips each. To ensure a seamless fit of these strips, several radiometric and geometric corrections are applied in the photogrammetric process. A simultaneous bundle adjustment of all strips as a block is carried out to estimate their precise exterior orientation. Because size, position, resolution and image quality of the strips in these blocks are heterogeneous, also the quality and distribution of the tie points vary. In absence of ground control points, heights of a global terrain model are used as reference information, and for this task a regular distribution of these tie points is preferable. Besides, their total number should be limited because of computational reasons. In this paper, we present an algorithm, which optimizes the distribution of tie points under these constraints. A large number of tie points used as input is reduced without affecting the geometric stability of the block by preserving connections between strips. This stability is achieved by using a regular grid in object space and discarding, for each grid cell, points which are redundant for the block adjustment. The set of tie points, filtered by the algorithm, shows a more homogenous distribution and is considerably smaller. Used for the block adjustment, it yields results of equal quality, with significantly shorter computation time. In this work, we present experiments with MC-30 half-tile blocks, which confirm our idea for reaching a stable and faster bundle adjustment. The described method is used for the systematic processing of HRSC data.
KW - Bundle adjustment
KW - HRSC
KW - Mars
KW - Planetary mapping
KW - Tie points
UR - http://www.scopus.com/inward/record.url?scp=85027844547&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLII-3-W1-15-2017
DO - 10.5194/isprs-archives-XLII-3-W1-15-2017
M3 - Conference article
AN - SCOPUS:85027844547
VL - 42
SP - 15
EP - 22
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
IS - 3/W1
T2 - 2017 International Symposium on Planetary Remote Sensing and Mapping, PRSM 2017
Y2 - 13 August 2017 through 16 August 2017
ER -