Details
Original language | English |
---|---|
Pages (from-to) | 898-914 |
Number of pages | 17 |
Journal | Chemosphere |
Volume | 212 |
Early online date | 30 Aug 2018 |
Publication status | Published - Dec 2018 |
Abstract
On-site flowback treatment systems are typically rated and selected based on three fundamental categories: satisfying customer needs (e.g. meeting effluent quality, capacity, delivery time and time required to reach stable and steady effluent quality), common features comparison (e.g. treatment costs, stability of operation, scalability, logistics, and maintenance frequency) and through substantial product differentiation such as better service condition, overcoming current market limitations (e.g. fouling, salinity limit), and having lower environmental footprints and emissions. For treatment of flowback, multiple on-site treatment systems are available for primary separation (i.e. reducing TSS concentrations and particle size below 25 μm for disposal), secondary separation (i.e. removing TSS, iron and main scaling ions, and reducing particle size up to 5 μm for reuse), or tertiary treatment (i.e. reducing TDS concentration in the permeate/distillate to below 500 mg/L) for recycling or discharge. Depending on geographic features, frac-fluid characteristics, and regulatory aspects, operators may choose disposal or reuse of flowback water. Among these approaches, desalination is the least utilized option while in the majority of cases on-site basic separation is selected which can result in savings up to $306,800 per well. Compared to desalination systems, basic separation systems (e.g. electrocoagulation, dissolved air floatation) have higher treatment capacity (159–4133 m3/d) and specific water treatment production per occupied space (8.9–58.8 m3/m2), lower treatment costs ($2.90 to $13.30 per m3) and energy demand, and finally generate less waste owing to their high recovery of 98–99.5%, which reduces both operator costs and environmental burdens.
Keywords
- Decentralized wastewater treatment, Economic feasibility, Flowback treatment costs, Hydraulic fracturing, Wastewater treatment technologies
ASJC Scopus subject areas
- Environmental Science(all)
- Environmental Engineering
- Environmental Science(all)
- Environmental Chemistry
- Chemistry(all)
- General Chemistry
- Environmental Science(all)
- Pollution
- Environmental Science(all)
- Health, Toxicology and Mutagenesis
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Chemosphere, Vol. 212, 12.2018, p. 898-914.
Research output: Contribution to journal › Article › Research
}
TY - JOUR
T1 - On-site treatment of flowback and produced water from shale gas hydraulic fracturing
T2 - A review and economic evaluation
AU - Mohammad-Pajooh, Ehsan
AU - Weichgrebe, Dirk
AU - Cuff, Graham
AU - Tosarkani, Babak Mohamadpour
AU - Rosenwinkel, Karl Heinz
N1 - © 2018 Elsevier Ltd. All rights reserved.
PY - 2018/12
Y1 - 2018/12
N2 - On-site flowback treatment systems are typically rated and selected based on three fundamental categories: satisfying customer needs (e.g. meeting effluent quality, capacity, delivery time and time required to reach stable and steady effluent quality), common features comparison (e.g. treatment costs, stability of operation, scalability, logistics, and maintenance frequency) and through substantial product differentiation such as better service condition, overcoming current market limitations (e.g. fouling, salinity limit), and having lower environmental footprints and emissions. For treatment of flowback, multiple on-site treatment systems are available for primary separation (i.e. reducing TSS concentrations and particle size below 25 μm for disposal), secondary separation (i.e. removing TSS, iron and main scaling ions, and reducing particle size up to 5 μm for reuse), or tertiary treatment (i.e. reducing TDS concentration in the permeate/distillate to below 500 mg/L) for recycling or discharge. Depending on geographic features, frac-fluid characteristics, and regulatory aspects, operators may choose disposal or reuse of flowback water. Among these approaches, desalination is the least utilized option while in the majority of cases on-site basic separation is selected which can result in savings up to $306,800 per well. Compared to desalination systems, basic separation systems (e.g. electrocoagulation, dissolved air floatation) have higher treatment capacity (159–4133 m3/d) and specific water treatment production per occupied space (8.9–58.8 m3/m2), lower treatment costs ($2.90 to $13.30 per m3) and energy demand, and finally generate less waste owing to their high recovery of 98–99.5%, which reduces both operator costs and environmental burdens.
AB - On-site flowback treatment systems are typically rated and selected based on three fundamental categories: satisfying customer needs (e.g. meeting effluent quality, capacity, delivery time and time required to reach stable and steady effluent quality), common features comparison (e.g. treatment costs, stability of operation, scalability, logistics, and maintenance frequency) and through substantial product differentiation such as better service condition, overcoming current market limitations (e.g. fouling, salinity limit), and having lower environmental footprints and emissions. For treatment of flowback, multiple on-site treatment systems are available for primary separation (i.e. reducing TSS concentrations and particle size below 25 μm for disposal), secondary separation (i.e. removing TSS, iron and main scaling ions, and reducing particle size up to 5 μm for reuse), or tertiary treatment (i.e. reducing TDS concentration in the permeate/distillate to below 500 mg/L) for recycling or discharge. Depending on geographic features, frac-fluid characteristics, and regulatory aspects, operators may choose disposal or reuse of flowback water. Among these approaches, desalination is the least utilized option while in the majority of cases on-site basic separation is selected which can result in savings up to $306,800 per well. Compared to desalination systems, basic separation systems (e.g. electrocoagulation, dissolved air floatation) have higher treatment capacity (159–4133 m3/d) and specific water treatment production per occupied space (8.9–58.8 m3/m2), lower treatment costs ($2.90 to $13.30 per m3) and energy demand, and finally generate less waste owing to their high recovery of 98–99.5%, which reduces both operator costs and environmental burdens.
KW - Decentralized wastewater treatment
KW - Economic feasibility
KW - Flowback treatment costs
KW - Hydraulic fracturing
KW - Wastewater treatment technologies
UR - http://www.scopus.com/inward/record.url?scp=85053111204&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2018.08.145
DO - 10.1016/j.chemosphere.2018.08.145
M3 - Article
C2 - 30286547
AN - SCOPUS:85053111204
VL - 212
SP - 898
EP - 914
JO - Chemosphere
JF - Chemosphere
SN - 0045-6535
ER -