Details
Original language | English |
---|---|
Pages (from-to) | 29552-29557 |
Number of pages | 6 |
Journal | RSC Advances |
Volume | 5 |
Issue number | 37 |
Publication status | Published - 19 Mar 2015 |
Abstract
Anti-corrosive coatings based on layered double hydroxides (LDHs) have been considered as promising alternatives to conventional chromate-containing conversion coatings. Among various LDHs, carbonate-intercalated LDH coatings with a c-axis preferred orientation should be the optimum structure for protecting metals against corrosion. Herein we successfully prepared NiAl-CO3 LDH coatings on aluminium plates in one step. Particularly it was found that CO2 dissolved in the precursor solution exerted great influence on the microstructure and anti-corrosion capacity of prepared LDH coatings. Trace amounts of CO2 in the precursor solution led to the formation of ab-oriented 7 μm-thick LDH coatings, while preferentially c-oriented LDH coatings with an average thickness of 12 μm were formed from CO2-saturated precursor solutions. A DC polarization test demonstrated that preferentially c-oriented LDH coatings exhibited much higher anti-corrosion performance than ab-oriented LDH coatings possibly due to the decreased density of mesoscopic defects. Simultaneously, CO2, the green gas, was also positively utilized.
ASJC Scopus subject areas
- Chemistry(all)
- General Chemistry
- Chemical Engineering(all)
- General Chemical Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: RSC Advances, Vol. 5, No. 37, 19.03.2015, p. 29552-29557.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - One-pot synthesis of NiAl-CO3 LDH anti-corrosion coatings from CO2-saturated precursors
AU - Liu, Yi
AU - Yu, Tongwen
AU - Cai, Rui
AU - Li, Yanshuo
AU - Yang, Weishen
AU - Caro, Jürgen
PY - 2015/3/19
Y1 - 2015/3/19
N2 - Anti-corrosive coatings based on layered double hydroxides (LDHs) have been considered as promising alternatives to conventional chromate-containing conversion coatings. Among various LDHs, carbonate-intercalated LDH coatings with a c-axis preferred orientation should be the optimum structure for protecting metals against corrosion. Herein we successfully prepared NiAl-CO3 LDH coatings on aluminium plates in one step. Particularly it was found that CO2 dissolved in the precursor solution exerted great influence on the microstructure and anti-corrosion capacity of prepared LDH coatings. Trace amounts of CO2 in the precursor solution led to the formation of ab-oriented 7 μm-thick LDH coatings, while preferentially c-oriented LDH coatings with an average thickness of 12 μm were formed from CO2-saturated precursor solutions. A DC polarization test demonstrated that preferentially c-oriented LDH coatings exhibited much higher anti-corrosion performance than ab-oriented LDH coatings possibly due to the decreased density of mesoscopic defects. Simultaneously, CO2, the green gas, was also positively utilized.
AB - Anti-corrosive coatings based on layered double hydroxides (LDHs) have been considered as promising alternatives to conventional chromate-containing conversion coatings. Among various LDHs, carbonate-intercalated LDH coatings with a c-axis preferred orientation should be the optimum structure for protecting metals against corrosion. Herein we successfully prepared NiAl-CO3 LDH coatings on aluminium plates in one step. Particularly it was found that CO2 dissolved in the precursor solution exerted great influence on the microstructure and anti-corrosion capacity of prepared LDH coatings. Trace amounts of CO2 in the precursor solution led to the formation of ab-oriented 7 μm-thick LDH coatings, while preferentially c-oriented LDH coatings with an average thickness of 12 μm were formed from CO2-saturated precursor solutions. A DC polarization test demonstrated that preferentially c-oriented LDH coatings exhibited much higher anti-corrosion performance than ab-oriented LDH coatings possibly due to the decreased density of mesoscopic defects. Simultaneously, CO2, the green gas, was also positively utilized.
UR - http://www.scopus.com/inward/record.url?scp=84926358421&partnerID=8YFLogxK
U2 - 10.1039/c5ra01969a
DO - 10.1039/c5ra01969a
M3 - Article
AN - SCOPUS:84926358421
VL - 5
SP - 29552
EP - 29557
JO - RSC Advances
JF - RSC Advances
SN - 2046-2069
IS - 37
ER -