On the principle of linearized stability in interpolation spaces for quasilinear evolution equations

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Bogdan Vasile Matioc
  • Christoph Walker

Research Organisations

External Research Organisations

  • University of Regensburg
View graph of relations

Details

Original languageEnglish
Pages (from-to)615-634
Number of pages20
JournalMonatshefte fur Mathematik
Volume191
Issue number3
Early online date4 Dec 2019
Publication statusPublished - Mar 2020

Abstract

We give a proof for the asymptotic exponential stability in admissible interpolation spaces of equilibrium solutions to quasilinear parabolic evolution equations.

Keywords

    Interpolation spaces, Principle of linearized stability, Quasilinear parabolic problem

ASJC Scopus subject areas

Cite this

On the principle of linearized stability in interpolation spaces for quasilinear evolution equations. / Matioc, Bogdan Vasile; Walker, Christoph.
In: Monatshefte fur Mathematik, Vol. 191, No. 3, 03.2020, p. 615-634.

Research output: Contribution to journalArticleResearchpeer review

Matioc BV, Walker C. On the principle of linearized stability in interpolation spaces for quasilinear evolution equations. Monatshefte fur Mathematik. 2020 Mar;191(3):615-634. Epub 2019 Dec 4. doi: 10.48550/arXiv.1804.10523, 10.1007/s00605-019-01352-z
Matioc, Bogdan Vasile ; Walker, Christoph. / On the principle of linearized stability in interpolation spaces for quasilinear evolution equations. In: Monatshefte fur Mathematik. 2020 ; Vol. 191, No. 3. pp. 615-634.
Download
@article{e26ceb4dd05f4dd884dd83ad2e732cfe,
title = "On the principle of linearized stability in interpolation spaces for quasilinear evolution equations",
abstract = "We give a proof for the asymptotic exponential stability in admissible interpolation spaces of equilibrium solutions to quasilinear parabolic evolution equations.",
keywords = "Interpolation spaces, Principle of linearized stability, Quasilinear parabolic problem",
author = "Matioc, {Bogdan Vasile} and Christoph Walker",
year = "2020",
month = mar,
doi = "10.48550/arXiv.1804.10523",
language = "English",
volume = "191",
pages = "615--634",
journal = "Monatshefte fur Mathematik",
issn = "0026-9255",
publisher = "Springer-Verlag Wien",
number = "3",

}

Download

TY - JOUR

T1 - On the principle of linearized stability in interpolation spaces for quasilinear evolution equations

AU - Matioc, Bogdan Vasile

AU - Walker, Christoph

PY - 2020/3

Y1 - 2020/3

N2 - We give a proof for the asymptotic exponential stability in admissible interpolation spaces of equilibrium solutions to quasilinear parabolic evolution equations.

AB - We give a proof for the asymptotic exponential stability in admissible interpolation spaces of equilibrium solutions to quasilinear parabolic evolution equations.

KW - Interpolation spaces

KW - Principle of linearized stability

KW - Quasilinear parabolic problem

UR - http://www.scopus.com/inward/record.url?scp=85076013333&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1804.10523

DO - 10.48550/arXiv.1804.10523

M3 - Article

AN - SCOPUS:85076013333

VL - 191

SP - 615

EP - 634

JO - Monatshefte fur Mathematik

JF - Monatshefte fur Mathematik

SN - 0026-9255

IS - 3

ER -