On the existence of global solutions for the 3D chemorepulsion system

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Tomasz Cieślak
  • Mario Fuest
  • Karol Hajduk
  • Mikołaj Sierzęga

Research Organisations

External Research Organisations

  • University of Warsaw
  • Polish Academy of Sciences (PASIFIC)
View graph of relations

Details

Original languageEnglish
Pages (from-to)49-65
Number of pages17
JournalZeitschrift für Analysis und ihre Anwendungen
Volume43
Issue number1/2
Publication statusPublished - 20 Mar 2024

Abstract

In this paper, we give sufficient conditions for global-in-time existence of classical solutions for the fully parabolic chemorepulsion system posed on a convex, bounded three-dimensional domain. Our main result establishes global-in-time existence of regular nonnegative solutions provided that ∇√u ∊ L4(0, T; L2(Ω)). Our method is related to the Bakry–Émery calculation and appears to be new in this context.

Keywords

    Bernis-type inequality, boundedness of solutions, chemorepulsion, chemotaxis, Lyapunov-like functional

ASJC Scopus subject areas

Cite this

On the existence of global solutions for the 3D chemorepulsion system. / Cieślak, Tomasz; Fuest, Mario; Hajduk, Karol et al.
In: Zeitschrift für Analysis und ihre Anwendungen, Vol. 43, No. 1/2, 20.03.2024, p. 49-65.

Research output: Contribution to journalArticleResearchpeer review

Cieślak T, Fuest M, Hajduk K, Sierzęga M. On the existence of global solutions for the 3D chemorepulsion system. Zeitschrift für Analysis und ihre Anwendungen. 2024 Mar 20;43(1/2):49-65. doi: 10.48550/arXiv.2303.09620, 10.4171/ZAA/1747
Cieślak, Tomasz ; Fuest, Mario ; Hajduk, Karol et al. / On the existence of global solutions for the 3D chemorepulsion system. In: Zeitschrift für Analysis und ihre Anwendungen. 2024 ; Vol. 43, No. 1/2. pp. 49-65.
Download
@article{c25480db9c5a4bfdacc78153366e044d,
title = "On the existence of global solutions for the 3D chemorepulsion system",
abstract = "In this paper, we give sufficient conditions for global-in-time existence of classical solutions for the fully parabolic chemorepulsion system posed on a convex, bounded three-dimensional domain. Our main result establishes global-in-time existence of regular nonnegative solutions provided that ∇√u ∊ L4(0, T; L2(Ω)). Our method is related to the Bakry–{\'E}mery calculation and appears to be new in this context.",
keywords = "Bernis-type inequality, boundedness of solutions, chemorepulsion, chemotaxis, Lyapunov-like functional",
author = "Tomasz Cie{\'s}lak and Mario Fuest and Karol Hajduk and Miko{\l}aj Sierz{\c e}ga",
note = "Publisher Copyright: {\textcopyright} 2024 European Mathematical Society.",
year = "2024",
month = mar,
day = "20",
doi = "10.48550/arXiv.2303.09620",
language = "English",
volume = "43",
pages = "49--65",
journal = "Zeitschrift f{\"u}r Analysis und ihre Anwendungen",
issn = "0232-2064",
publisher = "Heldermann Verlag",
number = "1/2",

}

Download

TY - JOUR

T1 - On the existence of global solutions for the 3D chemorepulsion system

AU - Cieślak, Tomasz

AU - Fuest, Mario

AU - Hajduk, Karol

AU - Sierzęga, Mikołaj

N1 - Publisher Copyright: © 2024 European Mathematical Society.

PY - 2024/3/20

Y1 - 2024/3/20

N2 - In this paper, we give sufficient conditions for global-in-time existence of classical solutions for the fully parabolic chemorepulsion system posed on a convex, bounded three-dimensional domain. Our main result establishes global-in-time existence of regular nonnegative solutions provided that ∇√u ∊ L4(0, T; L2(Ω)). Our method is related to the Bakry–Émery calculation and appears to be new in this context.

AB - In this paper, we give sufficient conditions for global-in-time existence of classical solutions for the fully parabolic chemorepulsion system posed on a convex, bounded three-dimensional domain. Our main result establishes global-in-time existence of regular nonnegative solutions provided that ∇√u ∊ L4(0, T; L2(Ω)). Our method is related to the Bakry–Émery calculation and appears to be new in this context.

KW - Bernis-type inequality

KW - boundedness of solutions

KW - chemorepulsion

KW - chemotaxis

KW - Lyapunov-like functional

UR - http://www.scopus.com/inward/record.url?scp=85192157439&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2303.09620

DO - 10.48550/arXiv.2303.09620

M3 - Article

AN - SCOPUS:85192157439

VL - 43

SP - 49

EP - 65

JO - Zeitschrift für Analysis und ihre Anwendungen

JF - Zeitschrift für Analysis und ihre Anwendungen

SN - 0232-2064

IS - 1/2

ER -