Details
Original language | Undefined/Unknown |
---|---|
Publication status | E-pub ahead of print - 20 Feb 2024 |
Abstract
Keywords
- math.NT, 11G40 (Primary) 11G05, 11G10, 14G10 (Secondary)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
2024.
Research output: Working paper/Preprint › Preprint
}
TY - UNPB
T1 - On the anticyclotomic Iwasawa theory of newforms at Eisenstein primes of semistable reduction
AU - Keller, Timo
AU - Yin, Mulun
N1 - Comments welcome
PY - 2024/2/20
Y1 - 2024/2/20
N2 - Let \(f\) be a newform of weight \(k\) and level \(N\) with trivial nebentypus. Let \(\mathfrak{p}\nmid 2N\) be a maximal prime ideal of the coefficient ring of \(f\) such that the self-dual twist of the mod-\(\mathfrak{p}\) Galois representation of \(f\) is reducible with constituents \(\phi,\psi\). Denote a decomposition group over the rational prime \(p\) below \(\mathfrak{p}\) by \(G_p\). We remove the condition \(\phi|_{G_p} \neq \mathbf{1}, \omega\) from [CGLS22], and generalize their results to newforms of arbitrary weights. As a consequence, we prove some Iwasawa main conjectures and get the \(p\)-part of the strong BSD conjecture for elliptic curves of analytic rank \(0\) or \(1\) over \(\mathbf{Q}\) in this setting. In particular, non-trivial \(p\)-torsion is allowed in the Mordell--Weil group. Using Hida families, we prove a Iwasawa main conjecture for newforms of weight \(2\) of multiplicative reduction at Eisenstein primes. In the above situations, we also get \(p\)-converse theorems to the theorems of Gross--Zagier--Kolyvagin. The \(p\)-converse theorems have applications to Goldfeld's conjecture in certain quadratic twist families of elliptic curves having a \(3\)-isogeny.
AB - Let \(f\) be a newform of weight \(k\) and level \(N\) with trivial nebentypus. Let \(\mathfrak{p}\nmid 2N\) be a maximal prime ideal of the coefficient ring of \(f\) such that the self-dual twist of the mod-\(\mathfrak{p}\) Galois representation of \(f\) is reducible with constituents \(\phi,\psi\). Denote a decomposition group over the rational prime \(p\) below \(\mathfrak{p}\) by \(G_p\). We remove the condition \(\phi|_{G_p} \neq \mathbf{1}, \omega\) from [CGLS22], and generalize their results to newforms of arbitrary weights. As a consequence, we prove some Iwasawa main conjectures and get the \(p\)-part of the strong BSD conjecture for elliptic curves of analytic rank \(0\) or \(1\) over \(\mathbf{Q}\) in this setting. In particular, non-trivial \(p\)-torsion is allowed in the Mordell--Weil group. Using Hida families, we prove a Iwasawa main conjecture for newforms of weight \(2\) of multiplicative reduction at Eisenstein primes. In the above situations, we also get \(p\)-converse theorems to the theorems of Gross--Zagier--Kolyvagin. The \(p\)-converse theorems have applications to Goldfeld's conjecture in certain quadratic twist families of elliptic curves having a \(3\)-isogeny.
KW - math.NT
KW - 11G40 (Primary) 11G05, 11G10, 14G10 (Secondary)
M3 - Preprint
BT - On the anticyclotomic Iwasawa theory of newforms at Eisenstein primes of semistable reduction
ER -