Details
Original language | English |
---|---|
Pages (from-to) | 2728-2750 |
Number of pages | 23 |
Journal | International Mathematics Research Notices |
Volume | 2015 |
Issue number | 10 |
Publication status | Published - 1 Jan 2015 |
Externally published | Yes |
Abstract
We prove Manin's conjecture over imaginary quadratic number fields for a cubic surface with a singularity of type E6.
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Mathematics Research Notices, Vol. 2015, No. 10, 01.01.2015, p. 2728-2750.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - On Manin's Conjecture for a Certain Singular Cubic Surface over Imaginary Quadratic Fields
AU - Derenthal, Ulrich
AU - Frei, Christopher
PY - 2015/1/1
Y1 - 2015/1/1
N2 - We prove Manin's conjecture over imaginary quadratic number fields for a cubic surface with a singularity of type E6.
AB - We prove Manin's conjecture over imaginary quadratic number fields for a cubic surface with a singularity of type E6.
UR - http://www.scopus.com/inward/record.url?scp=84929918131&partnerID=8YFLogxK
U2 - 10.1093/imrn/rnu016
DO - 10.1093/imrn/rnu016
M3 - Article
AN - SCOPUS:84929918131
VL - 2015
SP - 2728
EP - 2750
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 10
ER -