Details
Original language | English |
---|---|
Pages (from-to) | 147-159 |
Number of pages | 13 |
Journal | Journal of Computational and Applied Mathematics |
Volume | 67 |
Issue number | 1 |
Publication status | Published - 20 Feb 1996 |
Abstract
For a given Cauchy-Vandermonde system and for given multiple nodes a Lagrange-type formula for the interpolant is derived, interpolating a given function in the sense of Hermite. We give explicit analytic representations of the basic functions in terms of the nodes and prescribed poles. They are used to derive formulas for the entries of the adjoint of the confluent Cauchy-Vandermonde matrix corresponding to the interpolation problem thus providing an explicit representation of its inverse.
Keywords
- Cauchy-Vandermonde systems, Hermite interpolation, Inverse of a Cauchy-Vandermonde matrix
ASJC Scopus subject areas
- Mathematics(all)
- Computational Mathematics
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Computational and Applied Mathematics, Vol. 67, No. 1, 20.02.1996, p. 147-159.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - On hermite interpolation by Cauchy-Vandermonde systems
T2 - The Lagrange formula, the adjoint and the inverse of a Cauchy-Vandermonde matrix
AU - Mühlbach, G.
PY - 1996/2/20
Y1 - 1996/2/20
N2 - For a given Cauchy-Vandermonde system and for given multiple nodes a Lagrange-type formula for the interpolant is derived, interpolating a given function in the sense of Hermite. We give explicit analytic representations of the basic functions in terms of the nodes and prescribed poles. They are used to derive formulas for the entries of the adjoint of the confluent Cauchy-Vandermonde matrix corresponding to the interpolation problem thus providing an explicit representation of its inverse.
AB - For a given Cauchy-Vandermonde system and for given multiple nodes a Lagrange-type formula for the interpolant is derived, interpolating a given function in the sense of Hermite. We give explicit analytic representations of the basic functions in terms of the nodes and prescribed poles. They are used to derive formulas for the entries of the adjoint of the confluent Cauchy-Vandermonde matrix corresponding to the interpolation problem thus providing an explicit representation of its inverse.
KW - Cauchy-Vandermonde systems
KW - Hermite interpolation
KW - Inverse of a Cauchy-Vandermonde matrix
UR - http://www.scopus.com/inward/record.url?scp=0030079806&partnerID=8YFLogxK
U2 - 10.1016/0377-0427(94)00116-2
DO - 10.1016/0377-0427(94)00116-2
M3 - Article
AN - SCOPUS:0030079806
VL - 67
SP - 147
EP - 159
JO - Journal of Computational and Applied Mathematics
JF - Journal of Computational and Applied Mathematics
SN - 0377-0427
IS - 1
ER -