Loading [MathJax]/extensions/tex2jax.js

On a fixed point formula of Navarro–Rizo

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Benjamin Sambale

Details

Original languageEnglish
Pages (from-to)3629-3634
Number of pages6
JournalProceedings of the American Mathematical Society
Volume152
Issue number9
Early online date19 Jul 2024
Publication statusPublished - Sept 2024

Abstract

Let G be a π-separable group with a Hall π-subgroup H or order n. For x ∈ H let λ(x) be the number of Hall π-subgroups of G containing x. We show that Πd|nΠx∈H λ(xd) nd μ(d) = 1, where μ is the Möbius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt and Navarro-Rizo. We further investigate an additive version of this formula.

Keywords

    coprime action, Fixed points, p-solvable groups, Sylow subgroups, π-separable groups

ASJC Scopus subject areas

Cite this

On a fixed point formula of Navarro–Rizo. / Sambale, Benjamin.
In: Proceedings of the American Mathematical Society, Vol. 152, No. 9, 09.2024, p. 3629-3634.

Research output: Contribution to journalArticleResearchpeer review

Sambale B. On a fixed point formula of Navarro–Rizo. Proceedings of the American Mathematical Society. 2024 Sept;152(9):3629-3634. Epub 2024 Jul 19. doi: 10.48550/arXiv.2401.05289, 10.1090/proc/16936
Sambale, Benjamin. / On a fixed point formula of Navarro–Rizo. In: Proceedings of the American Mathematical Society. 2024 ; Vol. 152, No. 9. pp. 3629-3634.
Download
@article{7cbecb81b1a64b6ba12d52ade5d353cf,
title = "On a fixed point formula of Navarro–Rizo",
abstract = "Let G be a π-separable group with a Hall π-subgroup H or order n. For x ∈ H let λ(x) be the number of Hall π-subgroups of G containing x. We show that Πd|nΠx∈H λ(xd) nd μ(d) = 1, where μ is the M{\"o}bius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt and Navarro-Rizo. We further investigate an additive version of this formula.",
keywords = "coprime action, Fixed points, p-solvable groups, Sylow subgroups, π-separable groups",
author = "Benjamin Sambale",
note = "Publisher Copyright: {\textcopyright} 2024 by Benjamin Sambale.",
year = "2024",
month = sep,
doi = "10.48550/arXiv.2401.05289",
language = "English",
volume = "152",
pages = "3629--3634",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "9",

}

Download

TY - JOUR

T1 - On a fixed point formula of Navarro–Rizo

AU - Sambale, Benjamin

N1 - Publisher Copyright: © 2024 by Benjamin Sambale.

PY - 2024/9

Y1 - 2024/9

N2 - Let G be a π-separable group with a Hall π-subgroup H or order n. For x ∈ H let λ(x) be the number of Hall π-subgroups of G containing x. We show that Πd|nΠx∈H λ(xd) nd μ(d) = 1, where μ is the Möbius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt and Navarro-Rizo. We further investigate an additive version of this formula.

AB - Let G be a π-separable group with a Hall π-subgroup H or order n. For x ∈ H let λ(x) be the number of Hall π-subgroups of G containing x. We show that Πd|nΠx∈H λ(xd) nd μ(d) = 1, where μ is the Möbius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt and Navarro-Rizo. We further investigate an additive version of this formula.

KW - coprime action

KW - Fixed points

KW - p-solvable groups

KW - Sylow subgroups

KW - π-separable groups

UR - http://www.scopus.com/inward/record.url?scp=85200641106&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2401.05289

DO - 10.48550/arXiv.2401.05289

M3 - Article

AN - SCOPUS:85200641106

VL - 152

SP - 3629

EP - 3634

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 9

ER -