Details
Original language | English |
---|---|
Article number | 104021 |
Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |
Volume | 88 |
Issue number | 10 |
Publication status | Published - 15 Nov 2013 |
Externally published | Yes |
Abstract
We study for the first time a three-dimensional octahedron constellation for a space-based gravitational wave detector, which we call the octahedral gravitational observatory (OGO). With six spacecraft the constellation is able to remove laser frequency noise and acceleration disturbances from the gravitational wave signal without needing LISA-like drag-free control, thereby simplifying the payloads and placing less stringent demands on the thrusters. We generalize LISA's time-delay interferometry to displacement-noise free interferometry (DFI) by deriving a set of generators for those combinations of the data streams that cancel laser and acceleration noise. However, the three-dimensional configuration makes orbit selection complicated. So far, only a halo orbit near the Lagrangian point L1 has been found to be stable enough, and this allows only short arms up to 1400 km. We derive the sensitivity curve of OGO with this arm length, resulting in a peak sensitivity of about 2×10-23 Hz-1/2 near 100 Hz. We compare this version of OGO to the present generation of ground-based detectors and to some future detectors. We also investigate the scientific potentials of such a detector, which include observing gravitational waves from compact binary coalescences, the stochastic background, and pulsars as well as the possibility to test alternative theories of gravity. We find a mediocre performance level for this short arm length detector, between those of initial and advanced ground-based detectors. Thus, actually building a space-based detector of this specific configuration does not seem very efficient. However, when alternative orbits that allow for longer detector arms can be found, a detector with much improved science output could be constructed using the octahedron configuration and DFI solutions demonstrated in this paper. Also, since the sensitivity of a DFI detector is limited mainly by shot noise, we discuss how the overall sensitivity could be improved by using advanced technologies that reduce this particular noise source.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Nuclear and High Energy Physics
- Physics and Astronomy(all)
- Physics and Astronomy (miscellaneous)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Review D - Particles, Fields, Gravitation and Cosmology, Vol. 88, No. 10, 104021, 15.11.2013.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Octahedron configuration for a displacement noise-cancelling gravitational wave detector in space
AU - Wang, Yan
AU - Keitel, David
AU - Babak, Stanislav
AU - Petiteau, Antoine
AU - Otto, Markus
AU - Barke, Simon
AU - Kawazoe, Fumiko
AU - Khalaidovski, Alexander
AU - Müller, Vitali
AU - Schütze, Daniel
AU - Wittel, Holger
AU - Danzmann, Karsten
AU - Schutz, Bernard F.
PY - 2013/11/15
Y1 - 2013/11/15
N2 - We study for the first time a three-dimensional octahedron constellation for a space-based gravitational wave detector, which we call the octahedral gravitational observatory (OGO). With six spacecraft the constellation is able to remove laser frequency noise and acceleration disturbances from the gravitational wave signal without needing LISA-like drag-free control, thereby simplifying the payloads and placing less stringent demands on the thrusters. We generalize LISA's time-delay interferometry to displacement-noise free interferometry (DFI) by deriving a set of generators for those combinations of the data streams that cancel laser and acceleration noise. However, the three-dimensional configuration makes orbit selection complicated. So far, only a halo orbit near the Lagrangian point L1 has been found to be stable enough, and this allows only short arms up to 1400 km. We derive the sensitivity curve of OGO with this arm length, resulting in a peak sensitivity of about 2×10-23 Hz-1/2 near 100 Hz. We compare this version of OGO to the present generation of ground-based detectors and to some future detectors. We also investigate the scientific potentials of such a detector, which include observing gravitational waves from compact binary coalescences, the stochastic background, and pulsars as well as the possibility to test alternative theories of gravity. We find a mediocre performance level for this short arm length detector, between those of initial and advanced ground-based detectors. Thus, actually building a space-based detector of this specific configuration does not seem very efficient. However, when alternative orbits that allow for longer detector arms can be found, a detector with much improved science output could be constructed using the octahedron configuration and DFI solutions demonstrated in this paper. Also, since the sensitivity of a DFI detector is limited mainly by shot noise, we discuss how the overall sensitivity could be improved by using advanced technologies that reduce this particular noise source.
AB - We study for the first time a three-dimensional octahedron constellation for a space-based gravitational wave detector, which we call the octahedral gravitational observatory (OGO). With six spacecraft the constellation is able to remove laser frequency noise and acceleration disturbances from the gravitational wave signal without needing LISA-like drag-free control, thereby simplifying the payloads and placing less stringent demands on the thrusters. We generalize LISA's time-delay interferometry to displacement-noise free interferometry (DFI) by deriving a set of generators for those combinations of the data streams that cancel laser and acceleration noise. However, the three-dimensional configuration makes orbit selection complicated. So far, only a halo orbit near the Lagrangian point L1 has been found to be stable enough, and this allows only short arms up to 1400 km. We derive the sensitivity curve of OGO with this arm length, resulting in a peak sensitivity of about 2×10-23 Hz-1/2 near 100 Hz. We compare this version of OGO to the present generation of ground-based detectors and to some future detectors. We also investigate the scientific potentials of such a detector, which include observing gravitational waves from compact binary coalescences, the stochastic background, and pulsars as well as the possibility to test alternative theories of gravity. We find a mediocre performance level for this short arm length detector, between those of initial and advanced ground-based detectors. Thus, actually building a space-based detector of this specific configuration does not seem very efficient. However, when alternative orbits that allow for longer detector arms can be found, a detector with much improved science output could be constructed using the octahedron configuration and DFI solutions demonstrated in this paper. Also, since the sensitivity of a DFI detector is limited mainly by shot noise, we discuss how the overall sensitivity could be improved by using advanced technologies that reduce this particular noise source.
UR - http://www.scopus.com/inward/record.url?scp=84888246088&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.88.104021
DO - 10.1103/PhysRevD.88.104021
M3 - Article
AN - SCOPUS:84888246088
VL - 88
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
SN - 1550-7998
IS - 10
M1 - 104021
ER -