Details
Original language | English |
---|---|
Pages (from-to) | 1539-1549 |
Number of pages | 11 |
Journal | COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering |
Volume | 30 |
Issue number | 5 |
Publication status | Published - 13 Sept 2011 |
Abstract
Purpose - Because of their widespread use in industry, induction through-heaters of various metal products must be of high effectiveness not only in "quasi" steady-state operation but in different transient modes as well. Nowadays, they are usually designed to provide the required characteristics in "quasi" steady-state operation mode mainly. The purpose of this paper is to examine numerical simulation of transient processes in induction through-heating lines generally and investigate dynamic temperature fields during the first start of the heaters particularly. Design/methodology/ approach - The research methodology is based on coupled numerical electromagnetic and thermal analyses using FEM approach. ANSYS simulations are supported with the developed tools for imitation of mass transfer effects in continuous induction heating lines. Findings - The results show that transient temperature fields in the heated strip or slab significantly differ from their "quasi" steady-state descriptions. Local temperature variations acquired in longitudinal as well as transverse flux induction heaters during the first start have been predicted. Practical implications - The received results can be used for design of induction through-heaters and improvement of their characteristics in dynamic operation modes. Originality/value - Investigation of dynamic characteristics of the heaters in dynamic modes can be only done by numerical modelling based on special algorithms providing a time loop additional to coupling between electromagnetic and thermal analyses. Such algorithms have been developed and used for investigation of two types of induction installations: through-heaters of cylindrical billets for forging and heating lines of strip or thin slab for rolling mills.
Keywords
- Dynamic mode, Electromagnetism, Heat transfer, Induction heating, Numerical simulation, Slab, Strip
ASJC Scopus subject areas
- Computer Science(all)
- Computer Science Applications
- Computer Science(all)
- Computational Theory and Mathematics
- Engineering(all)
- Electrical and Electronic Engineering
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 30, No. 5, 13.09.2011, p. 1539-1549.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Numerical simulation and investigation of induction through-heaters in dynamic operation mode
AU - Blinov, Kirill
AU - Nacke, Bernard
AU - Klöpzig, Markus
AU - Nikanorov, Alexandre
PY - 2011/9/13
Y1 - 2011/9/13
N2 - Purpose - Because of their widespread use in industry, induction through-heaters of various metal products must be of high effectiveness not only in "quasi" steady-state operation but in different transient modes as well. Nowadays, they are usually designed to provide the required characteristics in "quasi" steady-state operation mode mainly. The purpose of this paper is to examine numerical simulation of transient processes in induction through-heating lines generally and investigate dynamic temperature fields during the first start of the heaters particularly. Design/methodology/ approach - The research methodology is based on coupled numerical electromagnetic and thermal analyses using FEM approach. ANSYS simulations are supported with the developed tools for imitation of mass transfer effects in continuous induction heating lines. Findings - The results show that transient temperature fields in the heated strip or slab significantly differ from their "quasi" steady-state descriptions. Local temperature variations acquired in longitudinal as well as transverse flux induction heaters during the first start have been predicted. Practical implications - The received results can be used for design of induction through-heaters and improvement of their characteristics in dynamic operation modes. Originality/value - Investigation of dynamic characteristics of the heaters in dynamic modes can be only done by numerical modelling based on special algorithms providing a time loop additional to coupling between electromagnetic and thermal analyses. Such algorithms have been developed and used for investigation of two types of induction installations: through-heaters of cylindrical billets for forging and heating lines of strip or thin slab for rolling mills.
AB - Purpose - Because of their widespread use in industry, induction through-heaters of various metal products must be of high effectiveness not only in "quasi" steady-state operation but in different transient modes as well. Nowadays, they are usually designed to provide the required characteristics in "quasi" steady-state operation mode mainly. The purpose of this paper is to examine numerical simulation of transient processes in induction through-heating lines generally and investigate dynamic temperature fields during the first start of the heaters particularly. Design/methodology/ approach - The research methodology is based on coupled numerical electromagnetic and thermal analyses using FEM approach. ANSYS simulations are supported with the developed tools for imitation of mass transfer effects in continuous induction heating lines. Findings - The results show that transient temperature fields in the heated strip or slab significantly differ from their "quasi" steady-state descriptions. Local temperature variations acquired in longitudinal as well as transverse flux induction heaters during the first start have been predicted. Practical implications - The received results can be used for design of induction through-heaters and improvement of their characteristics in dynamic operation modes. Originality/value - Investigation of dynamic characteristics of the heaters in dynamic modes can be only done by numerical modelling based on special algorithms providing a time loop additional to coupling between electromagnetic and thermal analyses. Such algorithms have been developed and used for investigation of two types of induction installations: through-heaters of cylindrical billets for forging and heating lines of strip or thin slab for rolling mills.
KW - Dynamic mode
KW - Electromagnetism
KW - Heat transfer
KW - Induction heating
KW - Numerical simulation
KW - Slab
KW - Strip
UR - http://www.scopus.com/inward/record.url?scp=80455168373&partnerID=8YFLogxK
U2 - 10.15488/2744
DO - 10.15488/2744
M3 - Article
AN - SCOPUS:80455168373
VL - 30
SP - 1539
EP - 1549
JO - COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
JF - COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
SN - 0332-1649
IS - 5
ER -