Details
Original language | English |
---|---|
Article number | 104654 |
Number of pages | 26 |
Journal | Coastal engineering |
Volume | 196 |
Early online date | 12 Nov 2024 |
Publication status | E-pub ahead of print - 12 Nov 2024 |
Abstract
Tsunami wave inundations are still one of the most devastating natural disasters worldwide. Tsunamis striking a settlement frequently devastate much of its infrastructure. In instances where infrastructure withstands the tsunami's actions, it acts as a flow resistance for the wave's run-up, altering inundation dynamics and flow depth. Accurately predicting the complex dynamics of tsunami wave run-up in densely populated urban areas is paramount for informing effective evacuation protocols and conducting comprehensive hazard and risk assessments. In pursuit of improving wave run-up prediction capabilities, this study delves into the three-dimensional numerical modelling of wave run-up of non-breaking, long tsunami waves in urbanized areas. Leveraging insights from a physical experiment with pump-driven wave generation and idealized infrastructure, a novel pressure-based wave generation boundary condition is developed. The boundary condition achieves an average of 4.9% accuracy in replicating the water surface elevation from experiments. Additionally, it attains an average 1.5% precision in reproducing flow velocities, furthermore reproducing the spatial flow dynamics accurately. Physical experiment wave run-up is modelled with an average 6.9% deviation for both simulations with and without idealized infrastructure. 63.0% higher non-linearity waves than in the physical experiments are additionally investigated to highlight the boundary conditions capabilities of high non-linearity wave generation, change in run-up reduction for higher non-linearity waves for infrastructure interaction and furthermore in-depth flow field characteristics during tsunami inundation. Finally, the study highlights deviations from analytically calculated wave run-up, emphasizing the necessity for numerical and physical experimental evaluation for both high non-linearity waves and tsunami infrastructure interaction, ultimately fostering both resilience and preparedness against tsunami hazards.
Keywords
- OpenFOAM, Pump-driven wave generation, RANS, Run-up reduction, Tsunami wave run-up, Tsunami wave-structure interaction
ASJC Scopus subject areas
- Environmental Science(all)
- Environmental Engineering
- Engineering(all)
- Ocean Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Coastal engineering, Vol. 196, 104654, 15.03.2025.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Numerical modelling of pump-driven tsunami generation and fluid-structure-interaction in idealized urbanized coastal areas during run-up
AU - Spröer, Felix
AU - Dempwolff, León Carlos
AU - Windt, Christian
AU - Krautwald, Clemens
AU - Schürenkamp, David
AU - Goseberg, Nils
N1 - Publisher Copyright: © 2024 The Authors
PY - 2024/11/12
Y1 - 2024/11/12
N2 - Tsunami wave inundations are still one of the most devastating natural disasters worldwide. Tsunamis striking a settlement frequently devastate much of its infrastructure. In instances where infrastructure withstands the tsunami's actions, it acts as a flow resistance for the wave's run-up, altering inundation dynamics and flow depth. Accurately predicting the complex dynamics of tsunami wave run-up in densely populated urban areas is paramount for informing effective evacuation protocols and conducting comprehensive hazard and risk assessments. In pursuit of improving wave run-up prediction capabilities, this study delves into the three-dimensional numerical modelling of wave run-up of non-breaking, long tsunami waves in urbanized areas. Leveraging insights from a physical experiment with pump-driven wave generation and idealized infrastructure, a novel pressure-based wave generation boundary condition is developed. The boundary condition achieves an average of 4.9% accuracy in replicating the water surface elevation from experiments. Additionally, it attains an average 1.5% precision in reproducing flow velocities, furthermore reproducing the spatial flow dynamics accurately. Physical experiment wave run-up is modelled with an average 6.9% deviation for both simulations with and without idealized infrastructure. 63.0% higher non-linearity waves than in the physical experiments are additionally investigated to highlight the boundary conditions capabilities of high non-linearity wave generation, change in run-up reduction for higher non-linearity waves for infrastructure interaction and furthermore in-depth flow field characteristics during tsunami inundation. Finally, the study highlights deviations from analytically calculated wave run-up, emphasizing the necessity for numerical and physical experimental evaluation for both high non-linearity waves and tsunami infrastructure interaction, ultimately fostering both resilience and preparedness against tsunami hazards.
AB - Tsunami wave inundations are still one of the most devastating natural disasters worldwide. Tsunamis striking a settlement frequently devastate much of its infrastructure. In instances where infrastructure withstands the tsunami's actions, it acts as a flow resistance for the wave's run-up, altering inundation dynamics and flow depth. Accurately predicting the complex dynamics of tsunami wave run-up in densely populated urban areas is paramount for informing effective evacuation protocols and conducting comprehensive hazard and risk assessments. In pursuit of improving wave run-up prediction capabilities, this study delves into the three-dimensional numerical modelling of wave run-up of non-breaking, long tsunami waves in urbanized areas. Leveraging insights from a physical experiment with pump-driven wave generation and idealized infrastructure, a novel pressure-based wave generation boundary condition is developed. The boundary condition achieves an average of 4.9% accuracy in replicating the water surface elevation from experiments. Additionally, it attains an average 1.5% precision in reproducing flow velocities, furthermore reproducing the spatial flow dynamics accurately. Physical experiment wave run-up is modelled with an average 6.9% deviation for both simulations with and without idealized infrastructure. 63.0% higher non-linearity waves than in the physical experiments are additionally investigated to highlight the boundary conditions capabilities of high non-linearity wave generation, change in run-up reduction for higher non-linearity waves for infrastructure interaction and furthermore in-depth flow field characteristics during tsunami inundation. Finally, the study highlights deviations from analytically calculated wave run-up, emphasizing the necessity for numerical and physical experimental evaluation for both high non-linearity waves and tsunami infrastructure interaction, ultimately fostering both resilience and preparedness against tsunami hazards.
KW - OpenFOAM
KW - Pump-driven wave generation
KW - RANS
KW - Run-up reduction
KW - Tsunami wave run-up
KW - Tsunami wave-structure interaction
UR - http://www.scopus.com/inward/record.url?scp=85209063720&partnerID=8YFLogxK
U2 - 10.1016/j.coastaleng.2024.104654
DO - 10.1016/j.coastaleng.2024.104654
M3 - Article
AN - SCOPUS:85209063720
VL - 196
JO - Coastal engineering
JF - Coastal engineering
SN - 0378-3839
M1 - 104654
ER -