Details
Original language | English |
---|---|
Pages (from-to) | 601-610 |
Number of pages | 10 |
Journal | International Journal of Heat and Technology |
Volume | 38 |
Issue number | 3 |
Publication status | Published - 15 Oct 2020 |
Abstract
In this paper extensive numerical investigation of the heat transfer characteristics and the pressure force of jet impingement from the single row and multiple rows on a fixed and moving flat surface are reported. The computations were carried out over a wide range of parameters: Relative nozzle-to-surface distance (H/d) from 0.5 to 6, relative nozzle to nozzle distances (S/d) from 4 to 10, jet angle from 45° to 90°, relative velocity ratio (Vplate/Vj) i.e. ratio of surface velocity to jet velocity from 0 to 1. The jet Reynolds number (Re) of 2,500, 3,400, 10,000, 20,000, and 23,000 and the number of jet rows of 1, 2, 4, and 8 have been used. It was found that the numerical accuracy by SST k-ω model is reasonably high to allow for a discussion of the main flow and heat transfer characteristics. The jet impingement heat transfer performance is generally enhanced with the increase of jet Reynolds number and jet angle and with the decrease of surface distance (H/d), jet distance (S/d) and the relative velocity ratio (Vplate/Vj) within the range examined. The pressure force coefficients on the impingement surface are relatively insensitive to Re number and the velocity ratio within the range examined, while it has highly dependent on H/d, S/d and jet angle. For multiple rows of aligned jet holes, the flow pattern exhibited a different shape due to the different intensity of the interference between adjacent air jets. The effect of multiple rows with regards to the impact on average Nu and pressure force coefficient for different geometry variations such as Re, H/d, S/d, VR and e is negligible compared to the single row by approximately 9 and 13% in average respectively. Based on the computed results, equations of dimensionless parameters are correlated.
Keywords
- Heat transfer, Jet angle, Jet impingement, Multiple rows, Pressure force, Surface motion
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Condensed Matter Physics
- Engineering(all)
- Mechanical Engineering
- Chemical Engineering(all)
- Fluid Flow and Transfer Processes
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Journal of Heat and Technology, Vol. 38, No. 3, 15.10.2020, p. 601-610.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Numerical investigation of heat transfer and pressure force from multiple jets impinging on a moving flat surface
AU - Chitsazan, Ali
AU - Glasmacher, Birgit
PY - 2020/10/15
Y1 - 2020/10/15
N2 - In this paper extensive numerical investigation of the heat transfer characteristics and the pressure force of jet impingement from the single row and multiple rows on a fixed and moving flat surface are reported. The computations were carried out over a wide range of parameters: Relative nozzle-to-surface distance (H/d) from 0.5 to 6, relative nozzle to nozzle distances (S/d) from 4 to 10, jet angle from 45° to 90°, relative velocity ratio (Vplate/Vj) i.e. ratio of surface velocity to jet velocity from 0 to 1. The jet Reynolds number (Re) of 2,500, 3,400, 10,000, 20,000, and 23,000 and the number of jet rows of 1, 2, 4, and 8 have been used. It was found that the numerical accuracy by SST k-ω model is reasonably high to allow for a discussion of the main flow and heat transfer characteristics. The jet impingement heat transfer performance is generally enhanced with the increase of jet Reynolds number and jet angle and with the decrease of surface distance (H/d), jet distance (S/d) and the relative velocity ratio (Vplate/Vj) within the range examined. The pressure force coefficients on the impingement surface are relatively insensitive to Re number and the velocity ratio within the range examined, while it has highly dependent on H/d, S/d and jet angle. For multiple rows of aligned jet holes, the flow pattern exhibited a different shape due to the different intensity of the interference between adjacent air jets. The effect of multiple rows with regards to the impact on average Nu and pressure force coefficient for different geometry variations such as Re, H/d, S/d, VR and e is negligible compared to the single row by approximately 9 and 13% in average respectively. Based on the computed results, equations of dimensionless parameters are correlated.
AB - In this paper extensive numerical investigation of the heat transfer characteristics and the pressure force of jet impingement from the single row and multiple rows on a fixed and moving flat surface are reported. The computations were carried out over a wide range of parameters: Relative nozzle-to-surface distance (H/d) from 0.5 to 6, relative nozzle to nozzle distances (S/d) from 4 to 10, jet angle from 45° to 90°, relative velocity ratio (Vplate/Vj) i.e. ratio of surface velocity to jet velocity from 0 to 1. The jet Reynolds number (Re) of 2,500, 3,400, 10,000, 20,000, and 23,000 and the number of jet rows of 1, 2, 4, and 8 have been used. It was found that the numerical accuracy by SST k-ω model is reasonably high to allow for a discussion of the main flow and heat transfer characteristics. The jet impingement heat transfer performance is generally enhanced with the increase of jet Reynolds number and jet angle and with the decrease of surface distance (H/d), jet distance (S/d) and the relative velocity ratio (Vplate/Vj) within the range examined. The pressure force coefficients on the impingement surface are relatively insensitive to Re number and the velocity ratio within the range examined, while it has highly dependent on H/d, S/d and jet angle. For multiple rows of aligned jet holes, the flow pattern exhibited a different shape due to the different intensity of the interference between adjacent air jets. The effect of multiple rows with regards to the impact on average Nu and pressure force coefficient for different geometry variations such as Re, H/d, S/d, VR and e is negligible compared to the single row by approximately 9 and 13% in average respectively. Based on the computed results, equations of dimensionless parameters are correlated.
KW - Heat transfer
KW - Jet angle
KW - Jet impingement
KW - Multiple rows
KW - Pressure force
KW - Surface motion
UR - http://www.scopus.com/inward/record.url?scp=85096037107&partnerID=8YFLogxK
U2 - 10.18280/IJHT.380304
DO - 10.18280/IJHT.380304
M3 - Article
AN - SCOPUS:85096037107
VL - 38
SP - 601
EP - 610
JO - International Journal of Heat and Technology
JF - International Journal of Heat and Technology
SN - 0392-8764
IS - 3
ER -