Details
Original language | English |
---|---|
Journal | Proceedings of Science |
Volume | 6 |
Early online date | 25 Sept 2000 |
Publication status | Published - 2000 |
Event | 2000 Non-Perturbative Quantum Effects, TMR 2000 - Paris, France Duration: 7 Sept 2000 → 13 Sept 2000 |
Abstract
The representation theory of the Virasoro algebra in the case of a logarithmic conformal field theory is considered. Here, indecomposable representations have to be taken into account, which has many interesting consequences. We study the generalization of null vectors towards the case of indecomposable representation modules and, in particular, how such logarithmic null vectors can be used to derive differential equations for correlation functions. We show that differential equations for correlation functions with logarithmic fields become inhomogeneous.
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Proceedings of Science, Vol. 6, 2000.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Null vectors in logarithmic conformal field theory
AU - Flohr, Michael
N1 - Publisher Copyright: © 2000 Sissa Medialab Srl. All rights reserved.
PY - 2000
Y1 - 2000
N2 - The representation theory of the Virasoro algebra in the case of a logarithmic conformal field theory is considered. Here, indecomposable representations have to be taken into account, which has many interesting consequences. We study the generalization of null vectors towards the case of indecomposable representation modules and, in particular, how such logarithmic null vectors can be used to derive differential equations for correlation functions. We show that differential equations for correlation functions with logarithmic fields become inhomogeneous.
AB - The representation theory of the Virasoro algebra in the case of a logarithmic conformal field theory is considered. Here, indecomposable representations have to be taken into account, which has many interesting consequences. We study the generalization of null vectors towards the case of indecomposable representation modules and, in particular, how such logarithmic null vectors can be used to derive differential equations for correlation functions. We show that differential equations for correlation functions with logarithmic fields become inhomogeneous.
UR - http://www.scopus.com/inward/record.url?scp=85057592098&partnerID=8YFLogxK
U2 - 10.15488/5353
DO - 10.15488/5353
M3 - Conference article
AN - SCOPUS:85057592098
VL - 6
JO - Proceedings of Science
JF - Proceedings of Science
T2 - 2000 Non-Perturbative Quantum Effects, TMR 2000
Y2 - 7 September 2000 through 13 September 2000
ER -