Details
Original language | English |
---|---|
Article number | 101 |
Journal | Chinese Journal of Mechanical Engineering (English Edition) |
Volume | 34 |
Issue number | 1 |
Early online date | 3 Nov 2021 |
Publication status | Published - Dec 2021 |
Abstract
Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals, leading to a complex control system and seriously limiting their applications in industry. To overcome these issues, a novel traveling wave sandwich piezoelectric transducer with a single-phase drive is proposed in this study. Traveling waves are produced in two driving rings of the transducer while the longitudinal vibration is excited in its sandwich composite beam, due to the coupling property of the combined structure. This results in the production of elliptical motions in the two driving rings to achieve the drive function. An analytical model is firstly developed using the transfer matrix method to analyze the dynamic behavior of the proposed transducer. Its vibration characteristics are measured and compared with computational results to validate the effectiveness of the proposed analytical model. Besides, the driving concept of the transducer is investigated by computing the motion trajectory of surface points of the driving ring and the quality of traveling wave of the driving ring. Additionally, application example investigations on the driving effect of the proposed transducer are carried out by constructing and assembling a tracked mobile system. Experimental results indicated that 1) the assembled tracked mobile system moved in the driving frequency of 19410 Hz corresponding to its maximum mean velocity through frequency sensitivity experiments; 2) motion characteristic and traction performance measurements of the system prototype presented its maximum mean velocity with 59 mm/s and its maximum stalling traction force with 1.65 N, at the excitation voltage of 500 VRMS. These experimental results demonstrate the feasibility of the proposed traveling wave sandwich piezoelectric transducer.
Keywords
- Sandwich piezoelectric transducer, Single phase excitation, Transfer matrix method, Traveling wave, Ultrasonic motor
ASJC Scopus subject areas
- Engineering(all)
- Mechanical Engineering
- Engineering(all)
- Industrial and Manufacturing Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Chinese Journal of Mechanical Engineering (English Edition), Vol. 34, No. 1, 101, 12.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Novel Traveling Wave Sandwich Piezoelectric Transducer with Single Phase Drive
T2 - Theoretical Modeling, Experimental Validation, and Application Investigation
AU - Wang, Liang
AU - Bai, Fushi
AU - Hofmann, Viktor
AU - Jin, Jiamei
AU - Twiefel, Jens
N1 - Funding Information: Supported by the National Science Foundation of China (Grants Nos. 51905262 and U2037603), the Natural Science Foundation of Jiangsu Province (Grant No. BK20190398), and the State Key Laboratory of Mechanical System and Vibration (Grant No. MSV202011).
PY - 2021/12
Y1 - 2021/12
N2 - Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals, leading to a complex control system and seriously limiting their applications in industry. To overcome these issues, a novel traveling wave sandwich piezoelectric transducer with a single-phase drive is proposed in this study. Traveling waves are produced in two driving rings of the transducer while the longitudinal vibration is excited in its sandwich composite beam, due to the coupling property of the combined structure. This results in the production of elliptical motions in the two driving rings to achieve the drive function. An analytical model is firstly developed using the transfer matrix method to analyze the dynamic behavior of the proposed transducer. Its vibration characteristics are measured and compared with computational results to validate the effectiveness of the proposed analytical model. Besides, the driving concept of the transducer is investigated by computing the motion trajectory of surface points of the driving ring and the quality of traveling wave of the driving ring. Additionally, application example investigations on the driving effect of the proposed transducer are carried out by constructing and assembling a tracked mobile system. Experimental results indicated that 1) the assembled tracked mobile system moved in the driving frequency of 19410 Hz corresponding to its maximum mean velocity through frequency sensitivity experiments; 2) motion characteristic and traction performance measurements of the system prototype presented its maximum mean velocity with 59 mm/s and its maximum stalling traction force with 1.65 N, at the excitation voltage of 500 VRMS. These experimental results demonstrate the feasibility of the proposed traveling wave sandwich piezoelectric transducer.
AB - Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals, leading to a complex control system and seriously limiting their applications in industry. To overcome these issues, a novel traveling wave sandwich piezoelectric transducer with a single-phase drive is proposed in this study. Traveling waves are produced in two driving rings of the transducer while the longitudinal vibration is excited in its sandwich composite beam, due to the coupling property of the combined structure. This results in the production of elliptical motions in the two driving rings to achieve the drive function. An analytical model is firstly developed using the transfer matrix method to analyze the dynamic behavior of the proposed transducer. Its vibration characteristics are measured and compared with computational results to validate the effectiveness of the proposed analytical model. Besides, the driving concept of the transducer is investigated by computing the motion trajectory of surface points of the driving ring and the quality of traveling wave of the driving ring. Additionally, application example investigations on the driving effect of the proposed transducer are carried out by constructing and assembling a tracked mobile system. Experimental results indicated that 1) the assembled tracked mobile system moved in the driving frequency of 19410 Hz corresponding to its maximum mean velocity through frequency sensitivity experiments; 2) motion characteristic and traction performance measurements of the system prototype presented its maximum mean velocity with 59 mm/s and its maximum stalling traction force with 1.65 N, at the excitation voltage of 500 VRMS. These experimental results demonstrate the feasibility of the proposed traveling wave sandwich piezoelectric transducer.
KW - Sandwich piezoelectric transducer
KW - Single phase excitation
KW - Transfer matrix method
KW - Traveling wave
KW - Ultrasonic motor
UR - http://www.scopus.com/inward/record.url?scp=85118730452&partnerID=8YFLogxK
U2 - 10.1186/s10033-021-00623-x
DO - 10.1186/s10033-021-00623-x
M3 - Article
AN - SCOPUS:85118730452
VL - 34
JO - Chinese Journal of Mechanical Engineering (English Edition)
JF - Chinese Journal of Mechanical Engineering (English Edition)
SN - 1000-9345
IS - 1
M1 - 101
ER -