Details
Original language | English |
---|---|
Article number | 062003 |
Number of pages | 13 |
Journal | Physical Review D |
Volume | 100 |
Issue number | 6 |
Publication status | Published - 20 Sept 2019 |
Abstract
We present two novel methods, tested by LISA Pathfinder, to measure the gravitational constant G for the first time in space. Experiment 1 uses electrostatic suspension forces to measure a change in acceleration of a test mass due to a displaced source mass. Experiment 2 measures a change in relative acceleration between two test masses due to a slowly varying fuel tank mass. Experiment 1 gave a value of G=6.71±0.42(×10-11) m3 s-2 kg-1 and experiment 2 gave 6.15±0.35(×10-11) m3 s-2 kg-1, both consistent with each other to 1σ and with the CODATA 2014 recommended value of 6.67408±0.00031(×10-11) m3 s-2 kg-1 to 2σ. We outline several ideas to improve the results for a future experiment, and we suggest that a measurement in space would isolate many terrestrial issues that could be responsible for the inconsistencies between recent measurements.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physics and Astronomy (miscellaneous)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Review D, Vol. 100, No. 6, 062003, 20.09.2019.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Novel methods to measure the gravitational constant in space
AU - LISA Pathfinder Collaboration
AU - Armano, M.
AU - Audley, H.
AU - Baird, J.
AU - Binetruy, P.
AU - Born, M.
AU - Bortoluzzi, D.
AU - Castelli, E.
AU - Cavalleri, A.
AU - Cesarini, A.
AU - Cruise, A. M.
AU - Danzmann, Karsten
AU - De Deus Silva, M.
AU - Diepholz, I.
AU - Dixon, G.
AU - Dolesi, R.
AU - Ferraioli, L.
AU - Ferroni, V.
AU - Fitzsimons, E. D.
AU - Freschi, M.
AU - Gesa, L.
AU - Gibert, F.
AU - Giardini, D.
AU - Giusteri, R.
AU - Grimani, C.
AU - Grzymisch, J.
AU - Harrison, I.
AU - Hartig, Marie-Sophie
AU - Heinzel, Gerhard
AU - Hewitson, Martin
AU - Hollington, D.
AU - Hoyland, D.
AU - Hueller, M.
AU - Inchauspé, H.
AU - Jennrich, O.
AU - Jetzer, P.
AU - Karnesis, Nikolaos
AU - Kaune, B.
AU - Korsakova, N.
AU - Killow, C. J.
AU - Lobo, J. A.
AU - Liu, L.
AU - López-zaragoza, J. P.
AU - Maarschalkerweerd, R.
AU - Mance, D.
AU - Meshksar, N.
AU - Martín, V.
AU - Martin-polo, L.
AU - Martino, J.
AU - Martin-porqueras, F.
AU - Mcnamara, P. W.
N1 - Funding information: This work has been made possible by the LISA LPF mission, which is part of the space-science program of the European Space Agency. The French contribution has been supported by the CNES (Accord Specifique de projet CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris and the University Paris-Diderot. E. P. and H. I. would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (FKZ 50OQ0501 and FKZ 50OQ1601). The Italian contribution has been supported by Agenzia Spaziale Italiana and Istituto Nazionale di Fisica Nucleare. The Spanish contribution has been supported by Contracts No. AYA2010-15709 (MICINN), No. ESP2013-47637-P, No. ESP2015-67234-P, No. ESP2017-90084-P (MINECO), and No. 2017-SGR-1469 (AGAUR). M. N. acknowledges support from Fundación General CSIC (Programa ComFuturo). F. R. acknowledges support from a Formación de Personal Investigador (MINECO) contract. The Swiss contribution acknowledges the support of the Swiss Space Office (SSO) via the PRODEX Programme of ESA. L. Ferraioli is supported by the Swiss National Science Foundation. The UK groups wish to acknowledge support from the United Kingdom Space Agency (UKSA), the University of Glasgow, the University of Birmingham, Imperial College, and the Scottish Universities Physics Alliance (SUPA). J. I. T. and J. S. acknowledge the support of the U.S. National Aeronautics and Space Administration (NASA).
PY - 2019/9/20
Y1 - 2019/9/20
N2 - We present two novel methods, tested by LISA Pathfinder, to measure the gravitational constant G for the first time in space. Experiment 1 uses electrostatic suspension forces to measure a change in acceleration of a test mass due to a displaced source mass. Experiment 2 measures a change in relative acceleration between two test masses due to a slowly varying fuel tank mass. Experiment 1 gave a value of G=6.71±0.42(×10-11) m3 s-2 kg-1 and experiment 2 gave 6.15±0.35(×10-11) m3 s-2 kg-1, both consistent with each other to 1σ and with the CODATA 2014 recommended value of 6.67408±0.00031(×10-11) m3 s-2 kg-1 to 2σ. We outline several ideas to improve the results for a future experiment, and we suggest that a measurement in space would isolate many terrestrial issues that could be responsible for the inconsistencies between recent measurements.
AB - We present two novel methods, tested by LISA Pathfinder, to measure the gravitational constant G for the first time in space. Experiment 1 uses electrostatic suspension forces to measure a change in acceleration of a test mass due to a displaced source mass. Experiment 2 measures a change in relative acceleration between two test masses due to a slowly varying fuel tank mass. Experiment 1 gave a value of G=6.71±0.42(×10-11) m3 s-2 kg-1 and experiment 2 gave 6.15±0.35(×10-11) m3 s-2 kg-1, both consistent with each other to 1σ and with the CODATA 2014 recommended value of 6.67408±0.00031(×10-11) m3 s-2 kg-1 to 2σ. We outline several ideas to improve the results for a future experiment, and we suggest that a measurement in space would isolate many terrestrial issues that could be responsible for the inconsistencies between recent measurements.
UR - http://www.scopus.com/inward/record.url?scp=85073032188&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.100.062003
DO - 10.1103/PhysRevD.100.062003
M3 - Article
VL - 100
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 6
M1 - 062003
ER -