Details
Original language | English |
---|---|
Pages (from-to) | 6-14 |
Number of pages | 9 |
Journal | Applied surface science |
Volume | 322 |
Early online date | 18 Oct 2014 |
Publication status | Published - 15 Dec 2014 |
Abstract
In this paper, we study the structure, microhardness, and tribological properties of surface layers of mild (0.19% C) steel, which was formed by electron-beam cladding with an iron-graphite powder mixture followed by quenching and tempering. A 1.4 MeV electron beam that was extracted into air was used. Cladding of steel with the iron-graphite mixture at a beam current of 24 and 26 mA formed a hypoeutectic cast iron layer (2.19% C) and a hypereutectoid steel (1.57% C) layer, which were 2.0 and 2.6 mm thick, respectively. The microhardness of the surface-quenched and tempered steel and cast iron layers was 7 and 8 GPa, respectively. Electron-beam quenching of the surface layers of hypoeutectic cast iron was accompanied with multiple cracking. During the quenching of the 1.57% C steel layer, crack formation was not observed. In friction tests against fixed and loose abrasive particles, the surface layers of hypereutectoid steel and hypoeutectic cast iron that were produced by electron-beam cladding and quenching had lower wear rates than mild steel after pack carburizing, quenching, and tempering. In the sliding wear tests, the cast iron clad layer, which was subjected to electron-beam quenching and tempering, exhibited the highest wear resistance. Electron-beam treatment can be used to harden local areas of large workpieces. It is reasonable to treat clad layers of high-carbon steel with electron-beam quenching and tempering. To prevent multiple cracking, white cast iron layers should not be quenched.
Keywords
- Carburizing, Electron beam, Microstructure, Surface hardening, Wear resistance
ASJC Scopus subject areas
- Chemistry(all)
- General Chemistry
- Physics and Astronomy(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- General Physics and Astronomy
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Materials Science(all)
- Surfaces, Coatings and Films
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Applied surface science, Vol. 322, 15.12.2014, p. 6-14.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Non-vacuum electron-beam carburizing and surface hardening of mild steel
AU - Bataev, I. A.
AU - Golkovskii, M. G.
AU - Losinskaya, A. A.
AU - Bataev, A. A.
AU - Popelyukh, A. I.
AU - Hassel, T.
AU - Golovin, D. D.
N1 - Funding Information: This research was supported by the grant of the President of the Russian Federation for young researchers (project #14.Z56.14.5280-MK).
PY - 2014/12/15
Y1 - 2014/12/15
N2 - In this paper, we study the structure, microhardness, and tribological properties of surface layers of mild (0.19% C) steel, which was formed by electron-beam cladding with an iron-graphite powder mixture followed by quenching and tempering. A 1.4 MeV electron beam that was extracted into air was used. Cladding of steel with the iron-graphite mixture at a beam current of 24 and 26 mA formed a hypoeutectic cast iron layer (2.19% C) and a hypereutectoid steel (1.57% C) layer, which were 2.0 and 2.6 mm thick, respectively. The microhardness of the surface-quenched and tempered steel and cast iron layers was 7 and 8 GPa, respectively. Electron-beam quenching of the surface layers of hypoeutectic cast iron was accompanied with multiple cracking. During the quenching of the 1.57% C steel layer, crack formation was not observed. In friction tests against fixed and loose abrasive particles, the surface layers of hypereutectoid steel and hypoeutectic cast iron that were produced by electron-beam cladding and quenching had lower wear rates than mild steel after pack carburizing, quenching, and tempering. In the sliding wear tests, the cast iron clad layer, which was subjected to electron-beam quenching and tempering, exhibited the highest wear resistance. Electron-beam treatment can be used to harden local areas of large workpieces. It is reasonable to treat clad layers of high-carbon steel with electron-beam quenching and tempering. To prevent multiple cracking, white cast iron layers should not be quenched.
AB - In this paper, we study the structure, microhardness, and tribological properties of surface layers of mild (0.19% C) steel, which was formed by electron-beam cladding with an iron-graphite powder mixture followed by quenching and tempering. A 1.4 MeV electron beam that was extracted into air was used. Cladding of steel with the iron-graphite mixture at a beam current of 24 and 26 mA formed a hypoeutectic cast iron layer (2.19% C) and a hypereutectoid steel (1.57% C) layer, which were 2.0 and 2.6 mm thick, respectively. The microhardness of the surface-quenched and tempered steel and cast iron layers was 7 and 8 GPa, respectively. Electron-beam quenching of the surface layers of hypoeutectic cast iron was accompanied with multiple cracking. During the quenching of the 1.57% C steel layer, crack formation was not observed. In friction tests against fixed and loose abrasive particles, the surface layers of hypereutectoid steel and hypoeutectic cast iron that were produced by electron-beam cladding and quenching had lower wear rates than mild steel after pack carburizing, quenching, and tempering. In the sliding wear tests, the cast iron clad layer, which was subjected to electron-beam quenching and tempering, exhibited the highest wear resistance. Electron-beam treatment can be used to harden local areas of large workpieces. It is reasonable to treat clad layers of high-carbon steel with electron-beam quenching and tempering. To prevent multiple cracking, white cast iron layers should not be quenched.
KW - Carburizing
KW - Electron beam
KW - Microstructure
KW - Surface hardening
KW - Wear resistance
UR - http://www.scopus.com/inward/record.url?scp=84913591801&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2014.09.137
DO - 10.1016/j.apsusc.2014.09.137
M3 - Article
AN - SCOPUS:84913591801
VL - 322
SP - 6
EP - 14
JO - Applied surface science
JF - Applied surface science
SN - 0169-4332
ER -