Details
Original language | English |
---|---|
Title of host publication | 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014 |
Editors | Antonio Huerta, Eugenio Onate, Xavier Oliver |
Pages | 6795-6806 |
Number of pages | 12 |
ISBN (electronic) | 9788494284472 |
Publication status | Published - 1 Jul 2014 |
Event | Joint 11th World Congress on Computational Mechanics, WCCM 2014, the 5th European Conference on Computational Mechanics, ECCM 2014 and the 6th European Conference on Computational Fluid Dynamics, ECFD 2014 - Barcelona, Spain Duration: 20 Jul 2014 → 25 Jul 2014 |
Publication series
Name | 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014 |
---|
Abstract
Numerical homogenization is based on the usage of finite element analysis for the description of average properties of materials with heterogeneous microstructure. The practical steps of a computational homogenization approach and representative examples related to masonry structures and ceramic materials are presented in this article. The non-linear Representative Volume Elements (RVEs) of a masonry structure, including parts with elastoplastic material behaviour (mortar) and a ceramic material with a unilateral contact interface (crack), are created and solved. Parametric analysis has been chosen and used for the description of the strain loading. Results concerning the average stress and strain in the RVE domain are then calculated. In addition, the stiffness is estimated for each loading level. Finally, two databases for the stiffness and the stress-strain data are created, a metamodel based on MATLAB interpolation is used, and an overall non-linear homogenization procedure (FE2), is considered. The good comparison with direct heterogeneous macroscopic models created by commercial software shows that the proposed method can be used for the simulation of non-linear heterogeneous structures.
Keywords
- Contact, FE, Homogenization, Interpolation, Masonry, Multi-scale
ASJC Scopus subject areas
- Engineering(all)
- Mechanics of Materials
- Computer Science(all)
- Computational Theory and Mathematics
- Computer Science(all)
- Computer Science Applications
- Engineering(all)
- Mechanical Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014. ed. / Antonio Huerta; Eugenio Onate; Xavier Oliver. 2014. p. 6795-6806 (11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014).
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Nonlinear homogenization in masonry structures
AU - Drosopoulos, Georgios A.
AU - Stavroulaki, Maria E.
AU - Giannis, Konstantinos
AU - Plymakis, Leonidas
AU - Stavroulakis, Georgios E.
AU - Wriggers, Peter
PY - 2014/7/1
Y1 - 2014/7/1
N2 - Numerical homogenization is based on the usage of finite element analysis for the description of average properties of materials with heterogeneous microstructure. The practical steps of a computational homogenization approach and representative examples related to masonry structures and ceramic materials are presented in this article. The non-linear Representative Volume Elements (RVEs) of a masonry structure, including parts with elastoplastic material behaviour (mortar) and a ceramic material with a unilateral contact interface (crack), are created and solved. Parametric analysis has been chosen and used for the description of the strain loading. Results concerning the average stress and strain in the RVE domain are then calculated. In addition, the stiffness is estimated for each loading level. Finally, two databases for the stiffness and the stress-strain data are created, a metamodel based on MATLAB interpolation is used, and an overall non-linear homogenization procedure (FE2), is considered. The good comparison with direct heterogeneous macroscopic models created by commercial software shows that the proposed method can be used for the simulation of non-linear heterogeneous structures.
AB - Numerical homogenization is based on the usage of finite element analysis for the description of average properties of materials with heterogeneous microstructure. The practical steps of a computational homogenization approach and representative examples related to masonry structures and ceramic materials are presented in this article. The non-linear Representative Volume Elements (RVEs) of a masonry structure, including parts with elastoplastic material behaviour (mortar) and a ceramic material with a unilateral contact interface (crack), are created and solved. Parametric analysis has been chosen and used for the description of the strain loading. Results concerning the average stress and strain in the RVE domain are then calculated. In addition, the stiffness is estimated for each loading level. Finally, two databases for the stiffness and the stress-strain data are created, a metamodel based on MATLAB interpolation is used, and an overall non-linear homogenization procedure (FE2), is considered. The good comparison with direct heterogeneous macroscopic models created by commercial software shows that the proposed method can be used for the simulation of non-linear heterogeneous structures.
KW - Contact
KW - FE
KW - Homogenization
KW - Interpolation
KW - Masonry
KW - Multi-scale
UR - http://www.scopus.com/inward/record.url?scp=84923972594&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84923972594
T3 - 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014
SP - 6795
EP - 6806
BT - 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014
A2 - Huerta, Antonio
A2 - Onate, Eugenio
A2 - Oliver, Xavier
T2 - Joint 11th World Congress on Computational Mechanics, WCCM 2014, the 5th European Conference on Computational Mechanics, ECCM 2014 and the 6th European Conference on Computational Fluid Dynamics, ECFD 2014
Y2 - 20 July 2014 through 25 July 2014
ER -