Details
Original language | English |
---|---|
Pages (from-to) | B1279-B1289 |
Journal | Journal of the Electrochemical Society |
Volume | 2010 |
Issue number | 157 |
Publication status | Published - 2010 |
Externally published | Yes |
Abstract
In this theoretical contribution, nonlinear frequency response analysis was applied for the investigation of electrochemical methanol oxidation. This technique expresses the input-output behavior of any weakly nonlinear system with the help of the Volterra series expansion and generalized Fourier transform into so-called higher order frequency response functions. These functions contain the system's nonlinear fingerprint. They can be derived analytically from a nonlinear model. These functions can be obtained experimentally from the measurement of higher harmonics induced by a high amplitude sinusoidal perturbation of the system of interest. Frequency response functions up to the second order have been derived analytically for four different model varieties describing the kinetics of the electrochemical methanol oxidation. The first-order frequency response function corresponds to the reciprocal value of the well-known electrochemical impedance, which represents the linear part of the frequency response. This function does not contain sufficient information for discrimination between the different kinetic models. In contrast, the symmetrical second-order frequency response functions H2(ω, ω) show differences in shape, which substantiate the availability of the theoretical prerequisites for model discrimination. A detailed parametric study for all four model variants has been performed. The results show that the basic features of the shapes of the H2(ω, ω) amplitude spectra corresponding to the four models remain unique. The ubiquitousness of the qualitative differences between the competing models, for the whole set of parameters chosen for our analysis, suggests that the aforementioned amplitude spectra contain sufficient information for an unequivocal model discrimination.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)
- Surfaces, Coatings and Films
- Chemistry(all)
- Electrochemistry
- Materials Science(all)
- Materials Chemistry
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of the Electrochemical Society, Vol. 2010, No. 157, 2010, p. B1279-B1289.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Nonlinear frequency response of electrochemical methanol oxidation kinetics
T2 - A theoretical analysis
AU - Bensmann, Boris
AU - Petkovska, Menka
AU - Vidaković-Koch, Tanja
AU - Hanke-Rauschenbach, Richard
AU - Sundmacher, Kai
N1 - Copyright: Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2010
Y1 - 2010
N2 - In this theoretical contribution, nonlinear frequency response analysis was applied for the investigation of electrochemical methanol oxidation. This technique expresses the input-output behavior of any weakly nonlinear system with the help of the Volterra series expansion and generalized Fourier transform into so-called higher order frequency response functions. These functions contain the system's nonlinear fingerprint. They can be derived analytically from a nonlinear model. These functions can be obtained experimentally from the measurement of higher harmonics induced by a high amplitude sinusoidal perturbation of the system of interest. Frequency response functions up to the second order have been derived analytically for four different model varieties describing the kinetics of the electrochemical methanol oxidation. The first-order frequency response function corresponds to the reciprocal value of the well-known electrochemical impedance, which represents the linear part of the frequency response. This function does not contain sufficient information for discrimination between the different kinetic models. In contrast, the symmetrical second-order frequency response functions H2(ω, ω) show differences in shape, which substantiate the availability of the theoretical prerequisites for model discrimination. A detailed parametric study for all four model variants has been performed. The results show that the basic features of the shapes of the H2(ω, ω) amplitude spectra corresponding to the four models remain unique. The ubiquitousness of the qualitative differences between the competing models, for the whole set of parameters chosen for our analysis, suggests that the aforementioned amplitude spectra contain sufficient information for an unequivocal model discrimination.
AB - In this theoretical contribution, nonlinear frequency response analysis was applied for the investigation of electrochemical methanol oxidation. This technique expresses the input-output behavior of any weakly nonlinear system with the help of the Volterra series expansion and generalized Fourier transform into so-called higher order frequency response functions. These functions contain the system's nonlinear fingerprint. They can be derived analytically from a nonlinear model. These functions can be obtained experimentally from the measurement of higher harmonics induced by a high amplitude sinusoidal perturbation of the system of interest. Frequency response functions up to the second order have been derived analytically for four different model varieties describing the kinetics of the electrochemical methanol oxidation. The first-order frequency response function corresponds to the reciprocal value of the well-known electrochemical impedance, which represents the linear part of the frequency response. This function does not contain sufficient information for discrimination between the different kinetic models. In contrast, the symmetrical second-order frequency response functions H2(ω, ω) show differences in shape, which substantiate the availability of the theoretical prerequisites for model discrimination. A detailed parametric study for all four model variants has been performed. The results show that the basic features of the shapes of the H2(ω, ω) amplitude spectra corresponding to the four models remain unique. The ubiquitousness of the qualitative differences between the competing models, for the whole set of parameters chosen for our analysis, suggests that the aforementioned amplitude spectra contain sufficient information for an unequivocal model discrimination.
KW - Fourier transforms
KW - Harmonic functions
KW - Methanol
KW - Nonlinear analysis
KW - Oxidation
KW - Frequency response
UR - http://www.scopus.com/inward/record.url?scp=77955794759&partnerID=8YFLogxK
U2 - 10.1149/1.3446836
DO - 10.1149/1.3446836
M3 - Article
AN - SCOPUS:77955794759
VL - 2010
SP - B1279-B1289
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
SN - 0013-4651
IS - 157
ER -