Details
Original language | English |
---|---|
Pages (from-to) | 9162-9170 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry B |
Volume | 105 |
Issue number | 38 |
Early online date | 31 Aug 2001 |
Publication status | Published - 1 Sept 2001 |
Abstract
Nanocrystalline (n-) LiNbO3 samples with average grain sizes between 16 and 105 nm were prepared from polycrystalline (p-) material with an average grain size of the order of one micrometer by high-energy ball milling. NMR investigations of (i) the 7Li spin-lattice relaxation (SLR) rate T1-1 in the laboratory and Tle-1 in the pulsed rotating reference frame and of (ii) 7Li spectra, in particular line shapes and motional narrowing (MN) of the central line, were performed in the temperature range from 300 K to a maximum of 1400 K in the case of p-LiNbO3 and from 140 to 460 K in the case of n-LiNbO3. The following results were obtained. (1) The SLR rate measurements yield an apparent activation energy of the Li diffusion in n-LiNbO3 that is about 1/3 of the value obtained for the p-material. (2) The frequency dependence of the SLR rate according to Tl(e)-1 α ν-β with β in the range from 1.1 to 1.5 as well as the asymmetry of the diffusion-induced peak in the log Tle-1 vs T-1 diagram of p-LiNbO3 are proving non-BPP behavior for both samples. (3) In n-LiNbO3 MN starts already at 250 K, i.e, about 400 K lower than in p-LiNbO3, and reflects an apparent activation energy that is approximately 1/3 of the value found for the p-material. (4) In contrast to p-LiNbO3, with increasing temperature the 7Li NMR spectra of n-LiNbO3 are revealing a characteristic structure of the central line, namely a superposition of two contributions. This is regarded as a consequence of the different dynamic properties of atoms in the interfacial regions (IR) and in the grains. From the spectrum at 450 K the fraction of atoms belonging to IR can be estimated. (5) The intensities of the quadrupole satellites showing different temperature dependencies in the p- and n-samples are indicating some exchange between the two spin reservoirs 'IR' and 'grains'. This leads to the hypothesis that n-ceramics cannot simply be regarded as heterogeneous materials where the two types of zones, i.e., IR and grains, are independent and closed.
ASJC Scopus subject areas
- Chemistry(all)
- Physical and Theoretical Chemistry
- Materials Science(all)
- Surfaces, Coatings and Films
- Materials Science(all)
- Materials Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Physical Chemistry B, Vol. 105, No. 38, 01.09.2001, p. 9162-9170.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - NMR investigations on ion dynamics and structure in nanocrystalline and polycrystalline LiNbO3
AU - Bork, Detlef
AU - Heitjans, Paul
PY - 2001/9/1
Y1 - 2001/9/1
N2 - Nanocrystalline (n-) LiNbO3 samples with average grain sizes between 16 and 105 nm were prepared from polycrystalline (p-) material with an average grain size of the order of one micrometer by high-energy ball milling. NMR investigations of (i) the 7Li spin-lattice relaxation (SLR) rate T1-1 in the laboratory and Tle-1 in the pulsed rotating reference frame and of (ii) 7Li spectra, in particular line shapes and motional narrowing (MN) of the central line, were performed in the temperature range from 300 K to a maximum of 1400 K in the case of p-LiNbO3 and from 140 to 460 K in the case of n-LiNbO3. The following results were obtained. (1) The SLR rate measurements yield an apparent activation energy of the Li diffusion in n-LiNbO3 that is about 1/3 of the value obtained for the p-material. (2) The frequency dependence of the SLR rate according to Tl(e)-1 α ν-β with β in the range from 1.1 to 1.5 as well as the asymmetry of the diffusion-induced peak in the log Tle-1 vs T-1 diagram of p-LiNbO3 are proving non-BPP behavior for both samples. (3) In n-LiNbO3 MN starts already at 250 K, i.e, about 400 K lower than in p-LiNbO3, and reflects an apparent activation energy that is approximately 1/3 of the value found for the p-material. (4) In contrast to p-LiNbO3, with increasing temperature the 7Li NMR spectra of n-LiNbO3 are revealing a characteristic structure of the central line, namely a superposition of two contributions. This is regarded as a consequence of the different dynamic properties of atoms in the interfacial regions (IR) and in the grains. From the spectrum at 450 K the fraction of atoms belonging to IR can be estimated. (5) The intensities of the quadrupole satellites showing different temperature dependencies in the p- and n-samples are indicating some exchange between the two spin reservoirs 'IR' and 'grains'. This leads to the hypothesis that n-ceramics cannot simply be regarded as heterogeneous materials where the two types of zones, i.e., IR and grains, are independent and closed.
AB - Nanocrystalline (n-) LiNbO3 samples with average grain sizes between 16 and 105 nm were prepared from polycrystalline (p-) material with an average grain size of the order of one micrometer by high-energy ball milling. NMR investigations of (i) the 7Li spin-lattice relaxation (SLR) rate T1-1 in the laboratory and Tle-1 in the pulsed rotating reference frame and of (ii) 7Li spectra, in particular line shapes and motional narrowing (MN) of the central line, were performed in the temperature range from 300 K to a maximum of 1400 K in the case of p-LiNbO3 and from 140 to 460 K in the case of n-LiNbO3. The following results were obtained. (1) The SLR rate measurements yield an apparent activation energy of the Li diffusion in n-LiNbO3 that is about 1/3 of the value obtained for the p-material. (2) The frequency dependence of the SLR rate according to Tl(e)-1 α ν-β with β in the range from 1.1 to 1.5 as well as the asymmetry of the diffusion-induced peak in the log Tle-1 vs T-1 diagram of p-LiNbO3 are proving non-BPP behavior for both samples. (3) In n-LiNbO3 MN starts already at 250 K, i.e, about 400 K lower than in p-LiNbO3, and reflects an apparent activation energy that is approximately 1/3 of the value found for the p-material. (4) In contrast to p-LiNbO3, with increasing temperature the 7Li NMR spectra of n-LiNbO3 are revealing a characteristic structure of the central line, namely a superposition of two contributions. This is regarded as a consequence of the different dynamic properties of atoms in the interfacial regions (IR) and in the grains. From the spectrum at 450 K the fraction of atoms belonging to IR can be estimated. (5) The intensities of the quadrupole satellites showing different temperature dependencies in the p- and n-samples are indicating some exchange between the two spin reservoirs 'IR' and 'grains'. This leads to the hypothesis that n-ceramics cannot simply be regarded as heterogeneous materials where the two types of zones, i.e., IR and grains, are independent and closed.
UR - http://www.scopus.com/inward/record.url?scp=0035960217&partnerID=8YFLogxK
U2 - 10.1021/jp012409w
DO - 10.1021/jp012409w
M3 - Article
AN - SCOPUS:0035960217
VL - 105
SP - 9162
EP - 9170
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1089-5647
IS - 38
ER -