Details
Original language | English |
---|---|
Pages (from-to) | 3534-3541 |
Number of pages | 8 |
Journal | LANGMUIR |
Volume | 28 |
Issue number | 7 |
Publication status | Published - 21 Feb 2012 |
Abstract
Folded proteins can be translocated across biological membranes via the Tat machinery. It has been shown in vitro that these Tat substrates can interact with membranes prior to translocation. Here we report a monolayer and infrared reflection-absorption spectroscopic (IRRAS) study of the initial states of this membrane interaction, the binding to a lipid monolayer at the air/water interface serving as a model for half of a biological membrane. Using the model Tat substrate HiPIP (high potential iron-sulfur protein) from Allochromatium vinosum, we found that the precursor preferentially interacts with monolayers of negatively charged phospholipids. The signal peptide is essential for the interaction of the precursor protein with the monolayer because the mature HiPIP protein showed no interaction with the lipid monolayer. However, the individual signal peptide interacted differently with the monolayer compared to the complete precursor protein. IRRA spectroscopy indicated that the individual signal peptide forms mainly aggregated β-sheet structures. This β-sheet formation did not occur for the signal peptide when being part of the full length precursor. In this case it adopted an ?-helical structure upon membrane insertion. The importance of the signal peptide and the mature domain for the membrane interaction is discussed in terms of current ideas of Tat substrate-membrane interactions.
ASJC Scopus subject areas
- Materials Science(all)
- Physics and Astronomy(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Chemistry(all)
- Spectroscopy
- Chemistry(all)
- Electrochemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: LANGMUIR, Vol. 28, No. 7, 21.02.2012, p. 3534-3541.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Negatively charged phospholipids trigger the interaction of a bacterial tat substrate precursor protein with lipid monolayers
AU - Brehmer, Tina
AU - Kerth, Andreas
AU - Graubner, Wenke
AU - Malesevic, Miroslav
AU - Hou, Bo
AU - Brüser, Thomas
AU - Blume, Alfred
N1 - Copyright: Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/2/21
Y1 - 2012/2/21
N2 - Folded proteins can be translocated across biological membranes via the Tat machinery. It has been shown in vitro that these Tat substrates can interact with membranes prior to translocation. Here we report a monolayer and infrared reflection-absorption spectroscopic (IRRAS) study of the initial states of this membrane interaction, the binding to a lipid monolayer at the air/water interface serving as a model for half of a biological membrane. Using the model Tat substrate HiPIP (high potential iron-sulfur protein) from Allochromatium vinosum, we found that the precursor preferentially interacts with monolayers of negatively charged phospholipids. The signal peptide is essential for the interaction of the precursor protein with the monolayer because the mature HiPIP protein showed no interaction with the lipid monolayer. However, the individual signal peptide interacted differently with the monolayer compared to the complete precursor protein. IRRA spectroscopy indicated that the individual signal peptide forms mainly aggregated β-sheet structures. This β-sheet formation did not occur for the signal peptide when being part of the full length precursor. In this case it adopted an ?-helical structure upon membrane insertion. The importance of the signal peptide and the mature domain for the membrane interaction is discussed in terms of current ideas of Tat substrate-membrane interactions.
AB - Folded proteins can be translocated across biological membranes via the Tat machinery. It has been shown in vitro that these Tat substrates can interact with membranes prior to translocation. Here we report a monolayer and infrared reflection-absorption spectroscopic (IRRAS) study of the initial states of this membrane interaction, the binding to a lipid monolayer at the air/water interface serving as a model for half of a biological membrane. Using the model Tat substrate HiPIP (high potential iron-sulfur protein) from Allochromatium vinosum, we found that the precursor preferentially interacts with monolayers of negatively charged phospholipids. The signal peptide is essential for the interaction of the precursor protein with the monolayer because the mature HiPIP protein showed no interaction with the lipid monolayer. However, the individual signal peptide interacted differently with the monolayer compared to the complete precursor protein. IRRA spectroscopy indicated that the individual signal peptide forms mainly aggregated β-sheet structures. This β-sheet formation did not occur for the signal peptide when being part of the full length precursor. In this case it adopted an ?-helical structure upon membrane insertion. The importance of the signal peptide and the mature domain for the membrane interaction is discussed in terms of current ideas of Tat substrate-membrane interactions.
UR - http://www.scopus.com/inward/record.url?scp=84859805863&partnerID=8YFLogxK
U2 - 10.1021/la204473t
DO - 10.1021/la204473t
M3 - Article
C2 - 22263701
AN - SCOPUS:84859805863
VL - 28
SP - 3534
EP - 3541
JO - LANGMUIR
JF - LANGMUIR
SN - 0743-7463
IS - 7
ER -