Details
Original language | English |
---|---|
Article number | 155 |
Journal | Nature Communications |
Volume | 9 |
Publication status | Published - 11 Jan 2018 |
Abstract
Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H2 permeability >2200 Barrer and H2/CO2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.
ASJC Scopus subject areas
- Chemistry(all)
- General Chemistry
- Biochemistry, Genetics and Molecular Biology(all)
- General Biochemistry,Genetics and Molecular Biology
- Physics and Astronomy(all)
- General Physics and Astronomy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Nature Communications, Vol. 9, 155, 11.01.2018.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - MXene molecular sieving membranes for highly efficient gas separation
AU - Ding, Li
AU - Wei, Yanying
AU - Li, Libo
AU - Zhang, Tao
AU - Wang, Haihui
AU - Xue, Jian
AU - Ding, Liang-Xin
AU - Wang, Suqing
AU - Caro, Jürgen
AU - Gogotsi, Yury
N1 - Funding Information: We gratefully acknowledge the funding from the NSFC (21536005, 51621001, 21506066 and 21606086), NSFC-DFG (GZ-678), the 1000 Talents program, Natural Science Foundation of the Guangdong Province (2014A030312007) and Guangdong Natural Science Funds for Distinguished Young Scholar (2017A030306002). CPU hours allocated by the Guangzhou Supercomputer Center of China and the kind help of Dr Zhiwei Qiao in calculating the QEq charge are gratefully acknowledged.
PY - 2018/1/11
Y1 - 2018/1/11
N2 - Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H2 permeability >2200 Barrer and H2/CO2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.
AB - Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H2 permeability >2200 Barrer and H2/CO2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.
UR - http://www.scopus.com/inward/record.url?scp=85040464715&partnerID=8YFLogxK
U2 - 10.1038/s41467-017-02529-6
DO - 10.1038/s41467-017-02529-6
M3 - Article
C2 - 29323113
AN - SCOPUS:85040464715
VL - 9
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
M1 - 155
ER -