Details
Original language | English |
---|---|
Pages (from-to) | 11135-11141 |
Number of pages | 7 |
Journal | RSC Advances |
Volume | 7 |
Issue number | 18 |
Early online date | 10 Feb 2017 |
Publication status | Published - 2017 |
Externally published | Yes |
Abstract
Successful isolation of atom thick molybdenum disulfide (MoS2) films has opened promising routes toward its practical applications in nanoelectronics. Recently, experimental fabrication of single-layer MoS2 membranes made from semiconducting (2H) and metallic (1T) phases was successfully accomplished in order to reach advanced MoS2 heterostructures with tunable electronic properties. A comprehensive understanding of the heat conduction properties of these heterostructures plays a crucial role not only for the overheating concerns in nanoelectronics but also for the design of specific systems such as thermoelectric nanodevices. In this investigation, we accordingly explore the thermal conductivity along all-MoS2 heterostructures by developing a combined atomistic-continuum multiscale model. In this approach, molecular dynamics simulations were employed to compute the thermal conductivity of pristine 2H and 1T phases and also the thermal contact conductance between 1T and 2H phases. Properties obtained from the atomistic simulations were finally used to construct macroscopic samples of MoS2 heterostructures using the finite element method. Our investigation confirms the possibility of finely tuning the heat transport along MoS2 heterostructures by controlling the domain size and the concentration of different phases. Findings from our multiscale model provide useful insight regarding the thermal conduction response of all-MoS2 heterostructures.
ASJC Scopus subject areas
- Chemistry(all)
- General Chemistry
- Chemical Engineering(all)
- General Chemical Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: RSC Advances, Vol. 7, No. 18, 2017, p. 11135-11141.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Multiscale modelling of heat conduction in all-MoS2 single-layer heterostructures
AU - Mortazavi, Bohayra
AU - Rabczuk, Timon
N1 - Funding information: BM and TR greatly acknowledge the financial support by European Research Council for COMBAT project (Grant number 615132).
PY - 2017
Y1 - 2017
N2 - Successful isolation of atom thick molybdenum disulfide (MoS2) films has opened promising routes toward its practical applications in nanoelectronics. Recently, experimental fabrication of single-layer MoS2 membranes made from semiconducting (2H) and metallic (1T) phases was successfully accomplished in order to reach advanced MoS2 heterostructures with tunable electronic properties. A comprehensive understanding of the heat conduction properties of these heterostructures plays a crucial role not only for the overheating concerns in nanoelectronics but also for the design of specific systems such as thermoelectric nanodevices. In this investigation, we accordingly explore the thermal conductivity along all-MoS2 heterostructures by developing a combined atomistic-continuum multiscale model. In this approach, molecular dynamics simulations were employed to compute the thermal conductivity of pristine 2H and 1T phases and also the thermal contact conductance between 1T and 2H phases. Properties obtained from the atomistic simulations were finally used to construct macroscopic samples of MoS2 heterostructures using the finite element method. Our investigation confirms the possibility of finely tuning the heat transport along MoS2 heterostructures by controlling the domain size and the concentration of different phases. Findings from our multiscale model provide useful insight regarding the thermal conduction response of all-MoS2 heterostructures.
AB - Successful isolation of atom thick molybdenum disulfide (MoS2) films has opened promising routes toward its practical applications in nanoelectronics. Recently, experimental fabrication of single-layer MoS2 membranes made from semiconducting (2H) and metallic (1T) phases was successfully accomplished in order to reach advanced MoS2 heterostructures with tunable electronic properties. A comprehensive understanding of the heat conduction properties of these heterostructures plays a crucial role not only for the overheating concerns in nanoelectronics but also for the design of specific systems such as thermoelectric nanodevices. In this investigation, we accordingly explore the thermal conductivity along all-MoS2 heterostructures by developing a combined atomistic-continuum multiscale model. In this approach, molecular dynamics simulations were employed to compute the thermal conductivity of pristine 2H and 1T phases and also the thermal contact conductance between 1T and 2H phases. Properties obtained from the atomistic simulations were finally used to construct macroscopic samples of MoS2 heterostructures using the finite element method. Our investigation confirms the possibility of finely tuning the heat transport along MoS2 heterostructures by controlling the domain size and the concentration of different phases. Findings from our multiscale model provide useful insight regarding the thermal conduction response of all-MoS2 heterostructures.
UR - http://www.scopus.com/inward/record.url?scp=85013074842&partnerID=8YFLogxK
U2 - 10.1039/c6ra26958c
DO - 10.1039/c6ra26958c
M3 - Article
AN - SCOPUS:85013074842
VL - 7
SP - 11135
EP - 11141
JO - RSC Advances
JF - RSC Advances
SN - 2046-2069
IS - 18
ER -