Details
Original language | English |
---|---|
Publication status | E-pub ahead of print - 23 Aug 2023 |
Abstract
Keywords
- math.NT
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
2023.
Research output: Working paper/Preprint › Preprint
}
TY - UNPB
T1 - Multiplicative relations among differences of singular moduli
AU - Aslanyan, Vahagn
AU - Eterović, Sebastian
AU - Fowler, Guy
N1 - 36 pages
PY - 2023/8/23
Y1 - 2023/8/23
N2 - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).
AB - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).
KW - math.NT
U2 - 10.48550/arXiv.2308.12244
DO - 10.48550/arXiv.2308.12244
M3 - Preprint
BT - Multiplicative relations among differences of singular moduli
ER -