Details
Original language | English |
---|---|
Pages (from-to) | 2351-2364 |
Number of pages | 14 |
Journal | Journal of the European Ceramic Society |
Volume | 18 |
Issue number | 16 |
Publication status | Published - Dec 1998 |
Abstract
For an industrial Si-SiC coated C/C material (reference material) the temperature dependence of the linear rate of mass loss is interpreted in the temperature range 773 < T < 1973 K. The Arrhenius plot of the thermogravimetrically determined oxidation rate shows four typical regimes. Only in the temperature range 1323 < T < 1823 K is the oxidation rate close to or lower than the limit for long-term application. Pulsed Laser Deposition (PLD) allows the ablation of nonconductive and high melting targets and the preparation of films with complex composition. High energy impact CO2 laser pulses (j=3.107 W cm-2) lead to melting and evaporation of the target material in a single step. Therefore the flux of the metal components is stoichiometric. Deposited green layers did not show IR peaks typical for mullite. After a short oxidation treatment (15 min at 1673 K) the formation of mullite in the coating was completed as was confirmed by IR spectroscopy and XRD investigations. Thin PLD-mullite layers (900 nm) did not markedly improve the oxidation resistance of the reference material in the high temperature range 1473 < T < 1973 K. However, a preoxidation treatment of the substrate material and mullite coatings with a thickness of 2.5 μm improved the oxidation behaviour significantly. Because of SiO2 formation at the mullite-SiC interface all samples exhibited a mass increase on oxidation. The inward diffusion of oxygen across the outer mullite-containing layer controlled the kinetics of the reaction as was deduced from 18O diffusivity measurements in PLD mullite layers. The calculated oxidation rates resulting from the diffusion parameters in SiO2 and mullite are close to the thermogravimetric data. For oxidation durations of three days only amorphous SiO2 is formed at the mullite-SiC interface.
ASJC Scopus subject areas
- Materials Science(all)
- Ceramics and Composites
- Materials Science(all)
- Materials Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of the European Ceramic Society, Vol. 18, No. 16, 12.1998, p. 2351-2364.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Mullite based oxidation protection for SiC-C/C composites in air at temperatures up to 1900 K
AU - Fritze, H.
AU - Jojic, J.
AU - Witke, T.
AU - Rüscher, C.
AU - Weber, S.
AU - Scherrer, S.
AU - Weiß, R.
AU - Schultrich, B.
AU - Borchardt, G.
N1 - Funding Information: The help of E. Ebeling with the preliminary oxidation runs was most valuable. M. Göbel kindly helped with the 18 O treatment. Financial support of the Deutsche Forschungsgemeinschaft made this work possible.
PY - 1998/12
Y1 - 1998/12
N2 - For an industrial Si-SiC coated C/C material (reference material) the temperature dependence of the linear rate of mass loss is interpreted in the temperature range 773 < T < 1973 K. The Arrhenius plot of the thermogravimetrically determined oxidation rate shows four typical regimes. Only in the temperature range 1323 < T < 1823 K is the oxidation rate close to or lower than the limit for long-term application. Pulsed Laser Deposition (PLD) allows the ablation of nonconductive and high melting targets and the preparation of films with complex composition. High energy impact CO2 laser pulses (j=3.107 W cm-2) lead to melting and evaporation of the target material in a single step. Therefore the flux of the metal components is stoichiometric. Deposited green layers did not show IR peaks typical for mullite. After a short oxidation treatment (15 min at 1673 K) the formation of mullite in the coating was completed as was confirmed by IR spectroscopy and XRD investigations. Thin PLD-mullite layers (900 nm) did not markedly improve the oxidation resistance of the reference material in the high temperature range 1473 < T < 1973 K. However, a preoxidation treatment of the substrate material and mullite coatings with a thickness of 2.5 μm improved the oxidation behaviour significantly. Because of SiO2 formation at the mullite-SiC interface all samples exhibited a mass increase on oxidation. The inward diffusion of oxygen across the outer mullite-containing layer controlled the kinetics of the reaction as was deduced from 18O diffusivity measurements in PLD mullite layers. The calculated oxidation rates resulting from the diffusion parameters in SiO2 and mullite are close to the thermogravimetric data. For oxidation durations of three days only amorphous SiO2 is formed at the mullite-SiC interface.
AB - For an industrial Si-SiC coated C/C material (reference material) the temperature dependence of the linear rate of mass loss is interpreted in the temperature range 773 < T < 1973 K. The Arrhenius plot of the thermogravimetrically determined oxidation rate shows four typical regimes. Only in the temperature range 1323 < T < 1823 K is the oxidation rate close to or lower than the limit for long-term application. Pulsed Laser Deposition (PLD) allows the ablation of nonconductive and high melting targets and the preparation of films with complex composition. High energy impact CO2 laser pulses (j=3.107 W cm-2) lead to melting and evaporation of the target material in a single step. Therefore the flux of the metal components is stoichiometric. Deposited green layers did not show IR peaks typical for mullite. After a short oxidation treatment (15 min at 1673 K) the formation of mullite in the coating was completed as was confirmed by IR spectroscopy and XRD investigations. Thin PLD-mullite layers (900 nm) did not markedly improve the oxidation resistance of the reference material in the high temperature range 1473 < T < 1973 K. However, a preoxidation treatment of the substrate material and mullite coatings with a thickness of 2.5 μm improved the oxidation behaviour significantly. Because of SiO2 formation at the mullite-SiC interface all samples exhibited a mass increase on oxidation. The inward diffusion of oxygen across the outer mullite-containing layer controlled the kinetics of the reaction as was deduced from 18O diffusivity measurements in PLD mullite layers. The calculated oxidation rates resulting from the diffusion parameters in SiO2 and mullite are close to the thermogravimetric data. For oxidation durations of three days only amorphous SiO2 is formed at the mullite-SiC interface.
UR - http://www.scopus.com/inward/record.url?scp=0032452532&partnerID=8YFLogxK
U2 - 10.1016/S0955-2219(98)00242-8
DO - 10.1016/S0955-2219(98)00242-8
M3 - Article
AN - SCOPUS:0032452532
VL - 18
SP - 2351
EP - 2364
JO - Journal of the European Ceramic Society
JF - Journal of the European Ceramic Society
SN - 0955-2219
IS - 16
ER -