Details
Original language | English |
---|---|
Article number | 226 |
Journal | Land |
Volume | 9 |
Issue number | 7 |
Publication status | Published - 11 Jul 2020 |
Externally published | Yes |
Abstract
Understanding the effects of socio-ecological shocks on land use/land cover (LULC) change is essential for developing land management strategies and for reducing adverse environmental pressures. Our study examines the impacts of the armed conflict in Syria, which began in mid-2011, and the related social and economic crisis on LULC between 2010 and 2018. We used remote sensing for change detection by applying a supervised maximum likelihood classification to Landsat images of the three target years 2010, 2014, and 2018. Based on the computed extent of our LULC classes and accuracy assessment, we calculated area-adjusted estimates and 95% confidence intervals. Our classification achieved an overall accuracy of 86.4%. Compared to 2010, we found an increase in spatial extent for bare areas (40,011 km2), forests (2576 km2), and urban and peri-urban areas (3560 km2), whereas rangelands (37,005 km2) and cultivated areas (9425 km2) decreased by 2018. It is not possible to determine whether the changes in LULC in Syria will be permanent or temporary. Natural conditions such as climate fluctuations had an impact on the uses of the natural environment and cultivated areas during the study period, especially in regions suffering from water stress. Although seasonal precipitation patterns and temperature affect LULC change, however, we could not identify a prevailing climate trend towards more drought-prone conditions. Our analysis focuses on (potential) direct and indirect implications of the Syrian conflict on LULC change, which most notably occurred between 2014 and 2018. Conflict-related main drivers were human activities and demographic changes, which are mainly attributable to large-scale population displacement, military operations, concomitant socio-economic status, and control of local resources. As the study provides quantitative and qualitative information on the dynamics of LULC changes in Syria, it may serve as a framework for further relevant conflict-related research and support planning, management practices, and sustainable development.
Keywords
- Conflict, Land use/land cover change, Landsat, Supervised classification, Syria
ASJC Scopus subject areas
- Environmental Science(all)
- Global and Planetary Change
- Environmental Science(all)
- Ecology
- Environmental Science(all)
- Nature and Landscape Conservation
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Land, Vol. 9, No. 7, 226, 11.07.2020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Monitoring of changes in land use/land cover in Syria from 2010 to 2018 using multitemporal landsat imagery and GIS
AU - Mohamed, Mohamed Ali
AU - Anders, Julian
AU - Schneider, Christoph
N1 - Publisher Copyright: © 2020 by the authors.
PY - 2020/7/11
Y1 - 2020/7/11
N2 - Understanding the effects of socio-ecological shocks on land use/land cover (LULC) change is essential for developing land management strategies and for reducing adverse environmental pressures. Our study examines the impacts of the armed conflict in Syria, which began in mid-2011, and the related social and economic crisis on LULC between 2010 and 2018. We used remote sensing for change detection by applying a supervised maximum likelihood classification to Landsat images of the three target years 2010, 2014, and 2018. Based on the computed extent of our LULC classes and accuracy assessment, we calculated area-adjusted estimates and 95% confidence intervals. Our classification achieved an overall accuracy of 86.4%. Compared to 2010, we found an increase in spatial extent for bare areas (40,011 km2), forests (2576 km2), and urban and peri-urban areas (3560 km2), whereas rangelands (37,005 km2) and cultivated areas (9425 km2) decreased by 2018. It is not possible to determine whether the changes in LULC in Syria will be permanent or temporary. Natural conditions such as climate fluctuations had an impact on the uses of the natural environment and cultivated areas during the study period, especially in regions suffering from water stress. Although seasonal precipitation patterns and temperature affect LULC change, however, we could not identify a prevailing climate trend towards more drought-prone conditions. Our analysis focuses on (potential) direct and indirect implications of the Syrian conflict on LULC change, which most notably occurred between 2014 and 2018. Conflict-related main drivers were human activities and demographic changes, which are mainly attributable to large-scale population displacement, military operations, concomitant socio-economic status, and control of local resources. As the study provides quantitative and qualitative information on the dynamics of LULC changes in Syria, it may serve as a framework for further relevant conflict-related research and support planning, management practices, and sustainable development.
AB - Understanding the effects of socio-ecological shocks on land use/land cover (LULC) change is essential for developing land management strategies and for reducing adverse environmental pressures. Our study examines the impacts of the armed conflict in Syria, which began in mid-2011, and the related social and economic crisis on LULC between 2010 and 2018. We used remote sensing for change detection by applying a supervised maximum likelihood classification to Landsat images of the three target years 2010, 2014, and 2018. Based on the computed extent of our LULC classes and accuracy assessment, we calculated area-adjusted estimates and 95% confidence intervals. Our classification achieved an overall accuracy of 86.4%. Compared to 2010, we found an increase in spatial extent for bare areas (40,011 km2), forests (2576 km2), and urban and peri-urban areas (3560 km2), whereas rangelands (37,005 km2) and cultivated areas (9425 km2) decreased by 2018. It is not possible to determine whether the changes in LULC in Syria will be permanent or temporary. Natural conditions such as climate fluctuations had an impact on the uses of the natural environment and cultivated areas during the study period, especially in regions suffering from water stress. Although seasonal precipitation patterns and temperature affect LULC change, however, we could not identify a prevailing climate trend towards more drought-prone conditions. Our analysis focuses on (potential) direct and indirect implications of the Syrian conflict on LULC change, which most notably occurred between 2014 and 2018. Conflict-related main drivers were human activities and demographic changes, which are mainly attributable to large-scale population displacement, military operations, concomitant socio-economic status, and control of local resources. As the study provides quantitative and qualitative information on the dynamics of LULC changes in Syria, it may serve as a framework for further relevant conflict-related research and support planning, management practices, and sustainable development.
KW - Conflict
KW - Land use/land cover change
KW - Landsat
KW - Supervised classification
KW - Syria
UR - http://www.scopus.com/inward/record.url?scp=85088537163&partnerID=8YFLogxK
U2 - 10.3390/land9070226
DO - 10.3390/land9070226
M3 - Article
AN - SCOPUS:85088537163
VL - 9
JO - Land
JF - Land
IS - 7
M1 - 226
ER -