Momentum Entanglement for Atom Interferometry

Research output: Contribution to journalArticleResearchpeer review

Authors

  • F. Anders
  • A. Idel
  • P. Feldmann
  • D. Bondarenko
  • S. Loriani
  • K. Lange
  • J. Peise
  • M. Gersemann
  • B. Meyer-Hoppe
  • S. Abend
  • N. Gaaloul
  • C. Schubert
  • D. Schlippert
  • L. Santos
  • E. Rasel
  • C. Klempt

External Research Organisations

  • DLR-Institute for Satellite Geodesy and Inertial Sensing
View graph of relations

Details

Original languageEnglish
Article number140402
JournalPhysical Review Letters
Volume127
Issue number14
Early online date29 Sept 2021
Publication statusPublished - 1 Oct 2021

Abstract

The Standard Quantum Limit (SQL) restricts the sensitivity of atom interferometers employing unentangled ensembles. Inertially sensitive light-pulse atom interferometry beyond the SQL requires the preparation of entangled atoms in different momentum states. So far, such a source of entangled atoms that is compatible with state-of-the-art interferometers has not been demonstrated. Here, we report the transfer of entanglement from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes. A measurement of number and phase correlations between the two momentum modes yields a squeezing parameter of -3.1(8) dB. The method is directly applicable for a future generation of entanglement-enhanced atom interferometers as desired for tests of the Einstein Equivalence Principle and the detection of gravitational waves.

ASJC Scopus subject areas

Cite this

Momentum Entanglement for Atom Interferometry. / Anders, F.; Idel, A.; Feldmann, P. et al.
In: Physical Review Letters, Vol. 127, No. 14, 140402, 01.10.2021.

Research output: Contribution to journalArticleResearchpeer review

Anders, F, Idel, A, Feldmann, P, Bondarenko, D, Loriani, S, Lange, K, Peise, J, Gersemann, M, Meyer-Hoppe, B, Abend, S, Gaaloul, N, Schubert, C, Schlippert, D, Santos, L, Rasel, E & Klempt, C 2021, 'Momentum Entanglement for Atom Interferometry', Physical Review Letters, vol. 127, no. 14, 140402. https://doi.org/10.1103/PhysRevLett.127.140402
Anders, F., Idel, A., Feldmann, P., Bondarenko, D., Loriani, S., Lange, K., Peise, J., Gersemann, M., Meyer-Hoppe, B., Abend, S., Gaaloul, N., Schubert, C., Schlippert, D., Santos, L., Rasel, E., & Klempt, C. (2021). Momentum Entanglement for Atom Interferometry. Physical Review Letters, 127(14), Article 140402. https://doi.org/10.1103/PhysRevLett.127.140402
Anders F, Idel A, Feldmann P, Bondarenko D, Loriani S, Lange K et al. Momentum Entanglement for Atom Interferometry. Physical Review Letters. 2021 Oct 1;127(14):140402. Epub 2021 Sept 29. doi: 10.1103/PhysRevLett.127.140402
Anders, F. ; Idel, A. ; Feldmann, P. et al. / Momentum Entanglement for Atom Interferometry. In: Physical Review Letters. 2021 ; Vol. 127, No. 14.
Download
@article{cff1be8f65c7490e8b98bdfda75c0401,
title = "Momentum Entanglement for Atom Interferometry",
abstract = "The Standard Quantum Limit (SQL) restricts the sensitivity of atom interferometers employing unentangled ensembles. Inertially sensitive light-pulse atom interferometry beyond the SQL requires the preparation of entangled atoms in different momentum states. So far, such a source of entangled atoms that is compatible with state-of-the-art interferometers has not been demonstrated. Here, we report the transfer of entanglement from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes. A measurement of number and phase correlations between the two momentum modes yields a squeezing parameter of -3.1(8) dB. The method is directly applicable for a future generation of entanglement-enhanced atom interferometers as desired for tests of the Einstein Equivalence Principle and the detection of gravitational waves.",
author = "F. Anders and A. Idel and P. Feldmann and D. Bondarenko and S. Loriani and K. Lange and J. Peise and M. Gersemann and B. Meyer-Hoppe and S. Abend and N. Gaaloul and C. Schubert and D. Schlippert and L. Santos and E. Rasel and C. Klempt",
note = "Funding Information: We thank A. Smerzi and G. T{\'o}th for valuable discussions and J. Arlt for a critical review of the Letter. We acknowledge support from the European Union through the QuantERA Grant No. 18-QUAN-0012-01 (CEBBEC). The work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany{\textquoteright}s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967, and through CRC 1227 (DQ-mat), projects A02 and B07. F. A. acknowledges support from the Hannover School for Nanotechnology (HSN). D. S. acknowledges support by the Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany under Contract No. 13N14875.",
year = "2021",
month = oct,
day = "1",
doi = "10.1103/PhysRevLett.127.140402",
language = "English",
volume = "127",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "14",

}

Download

TY - JOUR

T1 - Momentum Entanglement for Atom Interferometry

AU - Anders, F.

AU - Idel, A.

AU - Feldmann, P.

AU - Bondarenko, D.

AU - Loriani, S.

AU - Lange, K.

AU - Peise, J.

AU - Gersemann, M.

AU - Meyer-Hoppe, B.

AU - Abend, S.

AU - Gaaloul, N.

AU - Schubert, C.

AU - Schlippert, D.

AU - Santos, L.

AU - Rasel, E.

AU - Klempt, C.

N1 - Funding Information: We thank A. Smerzi and G. Tóth for valuable discussions and J. Arlt for a critical review of the Letter. We acknowledge support from the European Union through the QuantERA Grant No. 18-QUAN-0012-01 (CEBBEC). The work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967, and through CRC 1227 (DQ-mat), projects A02 and B07. F. A. acknowledges support from the Hannover School for Nanotechnology (HSN). D. S. acknowledges support by the Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany under Contract No. 13N14875.

PY - 2021/10/1

Y1 - 2021/10/1

N2 - The Standard Quantum Limit (SQL) restricts the sensitivity of atom interferometers employing unentangled ensembles. Inertially sensitive light-pulse atom interferometry beyond the SQL requires the preparation of entangled atoms in different momentum states. So far, such a source of entangled atoms that is compatible with state-of-the-art interferometers has not been demonstrated. Here, we report the transfer of entanglement from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes. A measurement of number and phase correlations between the two momentum modes yields a squeezing parameter of -3.1(8) dB. The method is directly applicable for a future generation of entanglement-enhanced atom interferometers as desired for tests of the Einstein Equivalence Principle and the detection of gravitational waves.

AB - The Standard Quantum Limit (SQL) restricts the sensitivity of atom interferometers employing unentangled ensembles. Inertially sensitive light-pulse atom interferometry beyond the SQL requires the preparation of entangled atoms in different momentum states. So far, such a source of entangled atoms that is compatible with state-of-the-art interferometers has not been demonstrated. Here, we report the transfer of entanglement from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes. A measurement of number and phase correlations between the two momentum modes yields a squeezing parameter of -3.1(8) dB. The method is directly applicable for a future generation of entanglement-enhanced atom interferometers as desired for tests of the Einstein Equivalence Principle and the detection of gravitational waves.

UR - http://www.scopus.com/inward/record.url?scp=85116351320&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.127.140402

DO - 10.1103/PhysRevLett.127.140402

M3 - Article

VL - 127

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 14

M1 - 140402

ER -